5.10. Double Sequences and Double Series


This chapter will extend the notion of sequences: So far we have dealt with one-dimensional lists of real numbers, a point of view that is also supported by our notation. It would be an interesting option to extend our elaboration on two-dimensional lists as well. Although we won't get really new results (see e.g. [5.10.9] - [5.10.12]) double sequences play an important role under technical aspects. They will provide basic criteria ([5.10.23] and [5.10.26]) for changing the order of limit formation.

Definition:  We call each function

( a nm ): × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcacaGG6aGaeSyfHu6aaWbaaSqabeaacqGHxiIkaaGccqGHxdaTcqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgkziUkabl2riHcaa@46A4@
[5.10.1]

a double sequence (in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ ). The function

( i=0 n j=0 m a ij ):× MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacaGG6aGaeSyfHuQaey41aqRaeSyfHuQaeyOKH4QaeSyhHekaaa@500B@
[5.10.2]

is called the double series with respect to  ( a nm ) n0 m0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcadaWgaaWcbaqbaeaabiqaaaqaaiaad6gacqGHLjYScaaIWaaabaGaamyBaiabgwMiZkaaicdaaaaabeaaaaa@426B@ .

Consider:

  • As with usual sequences we will call functions from k × l MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSijHi6aaWbaaSqabeaacqGHLjYScaWGRbaaaOGaey41aqRaeSijHi6aaWbaaSqabeaacqGHLjYScaWGSbaaaOGaeyOKH4QaeSyhHekaaa@43A8@ double sequences as well. We will note them (as already done in [5.10.2]) appropriately like this  ( a nm ) nk ml MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcadaWgaaWcbaqbaeaabiqaaaqaaiaad6gacqGHLjYScaWGRbaabaGaamyBaiabgwMiZkaadYgaaaaabeaaaaa@42D8@ .

  • Value tables to double sequences are of course to be displayed in a plane. In doing this we regard n as the row index running down and m as the column index running to the right. As an example we have:

    (n+ (1) n m)=( 0 1 2 3 3 4 5 6 2 1 0 1 5 6 7 8 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gacqGHRaWkcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gaaaGccaWGTbGaaiykaiabg2da9iaacIcafaqabeqbfaaaaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGOmaaqaaiabgkHiTiaaiodaaeaacqWIVlctaeaacaaIZaaabaGaaGinaaqaaiaaiwdaaeaacaaI2aaabaGaeS47IWeabaGaaGOmaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiabl+UimbqaaiaaiwdaaeaacaaI2aaabaGaaG4naaqaaiaaiIdaaeaacqWIVlctaeaacqWIUlstaeaacqWIUlstaeaacqWIUlstaeaacqWIUlstaeaacqWIXlYtaaGaaiykaaaa@612B@

     

Now we transfer the standard terms from the common sequences.

Definition:  A double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is called

1. bounded, if there is an  n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ and a  c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolabl2riHcaa@3945@ such that
 
| a nm |c  for all  n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacYhacqGHKjYOcaWGJbGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaaiilaiaad2gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@4C70@

 
[5.10.3]
2. increasing, if
 
n 1 n 2        m 1 m 2 a n 1 m 1 a n 2 m 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIXaaabeaakiabgsMiJkaad6gadaWgaaWcbaGaaGOmaaqabaGccaaMe8Uaey4jIKTaaGjbVlaad2gadaWgaaWcbaGaaGymaaqabaGccqGHKjYOcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaGzbVlabgkDiElaaywW7caWGHbWaaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaWccaaMc8UaamyBamaaBaaameaacaaIXaaabeaaaSqabaGccqGHKjYOcaWGHbWaaSbaaSqaaiaad6gadaWgaaadbaGaaGOmaaqabaWccaaMc8UaamyBamaaBaaameaacaaIYaaabeaaaSqabaaaaa@5935@

holds for each ( n 1 , m 1 ),( n 2 , m 2 ) × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaaiikaiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIYaaabeaakiaacMcacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgEna0kablwriLoaaCaaaleqabaGaey4fIOcaaaaa@4A70@


 
[5.10.4]
3. decreasing, if
 
n 1 n 2        m 1 m 2 a n 1 m 1 a n 2 m 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIXaaabeaakiabgsMiJkaad6gadaWgaaWcbaGaaGOmaaqabaGccaaMe8Uaey4jIKTaaGjbVlaad2gadaWgaaWcbaGaaGymaaqabaGccqGHKjYOcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaGzbVlabgkDiElaaywW7caWGHbWaaSbaaSqaaiaad6gadaWgaaadbaGaaGymaaqabaWccaaMc8UaamyBamaaBaaameaacaaIXaaabeaaaSqabaGccqGHLjYScaWGHbWaaSbaaSqaaiaad6gadaWgaaadbaGaaGOmaaqabaWccaaMc8UaamyBamaaBaaameaacaaIYaaabeaaaSqabaaaaa@5946@

holds for each ( n 1 , m 1 ),( n 2 , m 2 ) × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaaiikaiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIYaaabeaakiaacMcacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgEna0kablwriLoaaCaaaleqabaGaey4fIOcaaaaa@4A70@


 
[5.10.5]
4. convergent to g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolabl2riHcaa@3949@   (symbolically: a nm g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4Qaam4zaaaa@3CCE@ ), if there is an  n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ for
   every ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ such that
 
| a nm g|<ε  for all  n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiabgkHiTiaadEgacaGG8bGaeyipaWJaeqyTduMaaeOzaiaabYpacaqGYbGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacaGGSaGaamyBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@4DB4@

 
[5.10.6]
5. Cauchy sequence, if there is an  n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ for each ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ such that
 
| a n 1 m 1 a n 2 m 2 |<ε  for all   n 1 > n 2 n 0        m 1 > m 2 n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIXaaabeaaliaaykW7caWGTbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgkHiTiaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIYaaabeaaliaaykW7caWGTbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaakiaaysW7cqGHNis2caaMe8UaamyBamaaBaaaleaacaaIXaaabeaakiabg6da+iaad2gadaWgaaWcbaGaaGOmaaqabaGccqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@6541@
[5.10.7]

Consider:

  • The formulation of boundedness (and of the Cauchy criterion) has been adapted to the nature of double sequences and is not a pure copy of the original definition. Nevertheless they are a sound - to witness subsequently - generalization of [5.3.11] as we see from

    | a n |c  for all  n n 0 | a n |max{c,| a 1 |,,| a n 0 1 |}  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaaqabaGccaGG8bGaeyizImQaam4yaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaGccaaMf8UaeyO0H4TaaGzbVlaacYhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiiFaiabgsMiJkGac2gacaGGHbGaaiiEaiaacUhacaWGJbGaaiilaiaacYhacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiiFaiaacYcacqWIMaYscaGGSaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIWaaabeaaliabgkHiTiaaigdaaeqaaOGaaiiFaiaac2hacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gaaaa@6FA3@ .

     

Example:  

  • (1) n+m ( 1 n + 1 m )0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaamyBaaaakiaacIcadaWcaaqaaiaaigdaaeaacaWGUbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaad2gaaaGaaiykaiabgkziUkaaicdaaaa@43C5@
[5.10.8]

For a given ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ choose n 0 > 2 ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabg6da+maalaaabaGaaGOmaaqaaiabew7aLbaaaaa@3AC7@ , then every n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGTbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@3B9D@ holds:

| (1) n+m ( 1 n + 1 m )|= 1 n + 1 m < ε 2 + ε 2 =ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaad2gaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiaacMcacaGG8bGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiabgYda8maalaaabaGaeqyTdugabaGaaGOmaaaacqGHRaWkdaWcaaqaaiabew7aLbqaaiaaikdaaaGaeyypa0JaeqyTdugaaa@51FA@

With the new terms being quite close to the old ones we expect similar properties. For proving them the following proposition is helpful. Before let us call a function

ϕ=( ϕ 1 , ϕ 2 ): × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaeyypa0Jaaiikaiabew9aQnaaBaaaleaacaaIXaaabeaakiaacYcacqaHvpGAdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiOoaiablwriLoaaCaaaleqabaGaey4fIOcaaOGaeyOKH4QaeSyfHu6aaWbaaSqabeaacqGHxiIkaaGccqGHxdaTcqWIvesPdaahaaWcbeqaaiabgEHiQaaaaaa@4C2D@

strictly increasing if both coordinate functions ϕ 1  und  ϕ 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaaigdaaeqaaOGaaeyDaiaab6gacaqGKbGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaaaa@3DAA@ are strictly increasing.

Note that for any double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ the function ( a nm )ϕ=( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcacqWIyiYBcqaHvpGAcqGH9aqpcaGGOaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaaiykaaaa@45E7@ is a common sequence. Furthermore, by an easy induction argument, we have:

ϕ i (n)n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad6gacaGGPaGaeyyzImRaamOBaaaa@3D5E@   for all n

 

Proposition:  For any double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ we have:

1. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ bounded ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caGGOaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaaiykaaaa@416E@ bounded for all strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ [5.10.9]
2. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ monotone ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caGGOaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaaiykaaaa@416E@ monotone for all strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ [5.10.10]
3. a nm g a ϕ(n) g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4Qaam4zaiaaywW7cqGHuhY2caaMf8UaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaeyOKH4Qaam4zaaaa@4A53@   for all strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ [5.10.11]
4. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ Cauchy sequence ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caGGOaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaaiykaaaa@416E@ Cauchy sequence for all strictly
increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@
[5.10.12]

Proof:  
1.  

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ "  Let | a nm |c  for all  n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacYhacqGHKjYOcaWGJbGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaaiilaiaad2gacqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@4C70@ .

For n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@   we have  ϕ i (n) ϕ i ( n 0 ) n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad6gacaGGPaGaeyyzImRaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad6gadaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@4636@ and thus: | a ϕ(n) |c  for all  n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacYhacqGHKjYOcaWGJbGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@4B76@ . Consequently:

| a ϕ(n) |max{c,| a ϕ(1) |,,| a ϕ( n 0 1) |}  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacYhacqGHKjYOciGGTbGaaiyyaiaacIhacaGG7bGaam4yaiaacYcacaGG8bGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaaGymaiaacMcaaeqaaOGaaiiFaiaacYcacqWIMaYscaGGSaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gadaWgaaadbaGaaGimaaqabaWccqGHsislcaaIXaGaaiykaaqabaGccaGG8bGaaiyFaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaaaa@60A7@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@37C2@ "  is shown indirectly: If ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is unbounded, the assertion

| a nm |k  for all  n,mk+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacYhacqGHKjYOcaWGRbGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaaiilaiaad2gacqGHLjYScaWGRbGaey4kaSIaaGymaaaa@4D2C@

can't be true for any k. So there are numbers n k , m k >k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGTbWaaSbaaSqaaiaadUgaaeqaaOGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGH+aGpcaWGRbaaaaaa@3F5F@ for every  k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A65@ such that

| a n k    m k |>k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaWGRbaabeaaliaaykW7caWGTbWaaSbaaWqaaiaadUgaaeqaaaWcbeaakiaacYhacqGH+aGpcaWGRbaaaa@403D@ .

Now we set by recursion

ϕ(1)( n 1 , m 1 ) ϕ(i+1)( n p , m p ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabew9aQjaacIcacaaIXaGaaiykaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaaGymaaqabaGccaGGPaaabaGaeqy1dOMaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaadchaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaaaa@4D25@

with  pmax{ ϕ 1 (1), ϕ 2 (1),, ϕ 1 (i), ϕ 2 (i),i+1} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGymaiaacMcacaGGSaGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaigdacaGGPaGaaiilaiablAciljaacYcacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaamyAaiaacMcacaGGSaGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadMgacaGGPaGaaiilaiaadMgacqGHRaWkcaaIXaGaaiyFaaaa@5701@ .

ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ is strictly increasing as we have for all  i,j ,   ij MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacYcacaWGQbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaGccaGGSaGaaGjbVlaadMgacqGHLjYScaWGQbaaaa@41EC@ :

ϕ 1 (i+1)= n p >p ϕ 1 (j) ϕ 2 (i+1)= m p >p ϕ 2 (j) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabew9aQnaaBaaaleaacaaIXaaabeaakiaacIcacaWGPbGaey4kaSIaaGymaiaacMcacqGH9aqpcaWGUbWaaSbaaSqaaiaadchaaeqaaOGaeyOpa4JaamiCaiabgwMiZkabew9aQnaaBaaaleaacaaIXaaabeaakiaacIcacaWGQbGaaiykaaqaaiabew9aQnaaBaaaleaacaaIYaaabeaakiaacIcacaWGPbGaey4kaSIaaGymaiaacMcacqGH9aqpcaWGTbWaaSbaaSqaaiaadchaaeqaaOGaeyOpa4JaamiCaiabgwMiZkabew9aQnaaBaaaleaacaaIYaaabeaakiaacIcacaWGQbGaaiykaaaaaaa@5A90@

The estimate | a ϕ(i+1) |=| a n p    m p |>pi+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaaqabaGccaGG8bGaeyypa0JaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaWGWbaabeaaliaaykW7caWGTbWaaSbaaWqaaiaadchaaeqaaaWcbeaakiaacYhacqGH+aGpcaWGWbGaeyyzImRaamyAaiabgUcaRiaaigdaaaa@4E6F@ now proves ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ to be an unbounded sequence.   Contradiction!
 

2.  

For simplicity we only consider increasing sequences.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ":  For ji MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJkaadMgaaaa@38FB@ we have  ϕ 1 (j) ϕ 1 (i)       ϕ 2 (j) ϕ 2 (i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadQgacaGGPaGaeyizImQaeqy1dO2aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadMgacaGGPaGaaGjbVlabgEIizlaaysW7cqaHvpGAdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamOAaiaacMcacqGHKjYOcqaHvpGAdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamyAaiaacMcaaaa@51AF@   and thus: a ϕ(j) a ϕ(i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOAaiaacMcaaeqaaOGaeyizImQaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamyAaiaacMcaaeqaaaaa@4173@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@37C2@ ":  Again we proceed indirectly. Suppose there are two pairs of numbers ( n 1 , m 1 ),( n 2 , m 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaaiikaiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@41BB@   with  n 1 < n 2        m 1 < m 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIXaaabeaakiabgYda8iaad6gadaWgaaWcbaGaaGOmaaqabaGccaaMe8Uaey4jIKTaaGjbVlaad2gadaWgaaWcbaGaaGymaaqabaGccqGH8aapcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaa@43BF@  such that  a n 1 m 1 > a n 2 m 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbWaaSbaaWqaaiaaigdaaeqaaSGaaGPaVlaad2gadaWgaaadbaGaaGymaaqabaaaleqaaOGaeyOpa4JaamyyamaaBaaaleaacaWGUbWaaSbaaWqaaiaaikdaaeqaaSGaaGPaVlaad2gadaWgaaadbaGaaGOmaaqabaaaleqaaaaa@434D@ . We set

ϕ(1)( n 1 , m 1 ),ϕ(2)( n 2 , m 2 )andϕ(i+2)( n 2 +i, m 2 +i) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiikaiaaigdacaGGPaGaeyypa0Jaaiikaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyBamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaaGzbVlabew9aQjaacIcacaaIYaGaaiykaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaGzbVlaabwhacaqGUbGaaeizaiaaywW7cqaHvpGAcaGGOaGaamyAaiabgUcaRiaaikdacaGGPaGaeyypa0Jaaiikaiaad6gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGPbGaaiilaiaad2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGPbGaaiykaaaa@632B@ .

Obviously ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ is strictly increasing as is easily seen from the value tables:

( ϕ 1 )=( n 1 , n 2 , n 2 +1, n 2 +2,) ( ϕ 2 )=( m 1 , m 2 , m 2 +1, m 2 +2,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacIcacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0Jaaiikaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOBamaaBaaaleaacaaIYaaabeaakiaacYcacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGymaiaacYcacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaiaacYcacqWIMaYscaGGPaaabaGaaiikaiabew9aQnaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaGGOaGaamyBamaaBaaaleaacaaIXaaabeaakiaacYcacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaGaaiilaiaad2gadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIYaGaaiilaiablAciljaacMcaaaaaaa@5FBC@

but ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ is no increasing sequence.   Contradiction!
 

3.  

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ":  For ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ there is an n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ such that

| a nm g|<ε  for all  n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiabgkHiTiaadEgacaGG8bGaeyipaWJaeqyTduMaaeOzaiaabYpacaqGYbGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacaGGSaGaamyBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@4DB4@ .

As ϕ i (n)n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad6gacaGGPaGaeyyzImRaamOBaaaa@3D5E@ we have more than ever for all n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ :

| a ϕ(n) g|<ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiabgkHiTiaadEgacaGG8bGaeyipaWJaeqyTdugaaa@4121@

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@37C2@ ":  As usual we argue indirectly. Suppose ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ does not converge to g. Then there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ such that there are numbers n k , m k k+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbaabeaakiaacYcacaWGTbWaaSbaaSqaaiaadUgaaeqaaOGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHLjYScaWGRbGaey4kaSIaaGymaaaaaaa@41BA@ for every k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A65@ with

| a n k m k g|ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaWGRbaabeaaliaaykW7caWGTbWaaSbaaWqaaiaadUgaaeqaaaWcbeaakiabgkHiTiaadEgacaGG8bGaeyyzImRaeqyTdugaaa@438B@ .

Similar to 1. the recursion

ϕ(1)( n 1 , m 1 ) ϕ(i+1)( n p , m p ) , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabew9aQjaacIcacaaIXaGaaiykaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaaGymaaqabaGccaGGPaaabaGaeqy1dOMaaiikaiaadMgacqGHRaWkcaaIXaGaaiykaiabg2da9iaacIcacaWGUbWaaSbaaSqaaiaadchaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaamiCaaqabaGccaGGPaaaaaaa@4D25@

with  pmax{ ϕ 1 (1), ϕ 2 (1),, ϕ 1 (i), ϕ 2 (i)} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGymaiaacMcacaGGSaGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaigdacaGGPaGaaiilaiablAciljaacYcacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaamyAaiaacMcacaGGSaGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadMgacaGGPaGaaiyFaaaa@53C6@ provides a strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ such that

| a ϕ(n) g|ε  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiabgkHiTiaadEgacaGG8bGaeyyzImRaeqyTduMaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbaaaa@4A80@ .

( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ thus is divergent.   Contradiction!
 

4.  

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ":  If for an arbitrary ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@

| a n 1 m 1 a n 2 m 2 |<ε  holds for all   n 1 > n 2 n 0        m 1 > m 2 n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIXaaabeaaliaaykW7caWGTbWaaSbaaWqaaiaaigdaaeqaaaWcbeaakiabgkHiTiaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIYaaabeaaliaaykW7caWGTbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaakiaaysW7cqGHNis2caaMe8UaamyBamaaBaaaleaacaaIXaaabeaakiabg6da+iaad2gadaWgaaWcbaGaaGOmaaqabaGccqGHLjYScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@6541@ ,

we especially have (note: ϕ i (n)> ϕ i (m)m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad6gacaGGPaGaeyOpa4Jaeqy1dO2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaad2gacaGGPaGaeyyzImRaamyBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@473F@ )

| a ϕ(n) a ϕ(m) |<ε  for all  n>m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiabgkHiTiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad2gacaGGPaaabeaakiaacYhacqGH8aapcqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGH+aGpcaWGTbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@539E@ .

This estimate stays valid if nm MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgsMiJkaad2gaaaa@3903@ (interchanging the addends) and thus is valid for all  n,m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaacYcacaWGTbGaeyyzImRaamOBamaaBaaaleaacaaIWaaabeaaaaa@3B9D@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@37C2@ ":  If ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is no Cauchy sequence there is an ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ such that there are numbers n k > r k >k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaWGRbaabeaakiabg6da+iaadkhadaWgaaWcbaGaam4AaaqabaGccqGH+aGpcaWGRbaaaa@3C9F@   and  m k > s k >k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaWGRbaabeaakiabg6da+iaadohadaWgaaWcbaGaam4AaaqabaGccqGH+aGpcaWGRbaaaa@3C9F@   for every k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A65@ so that

| a n k m k a r k s k |ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBamaaBaaameaacaWGRbaabeaaliaaykW7caWGTbWaaSbaaWqaaiaadUgaaeqaaaWcbeaakiabgkHiTiaadggadaWgaaWcbaGaamOCamaaBaaameaacaWGRbaabeaaliaaykW7caWGZbWaaSbaaWqaaiaadUgaaeqaaaWcbeaakiaacYhacqGHLjYScqaH1oqzaaa@4985@ .

From the two-stage recursion

ϕ(1)( r 1 , s 1 )      ϕ(2)( n 1 , m 1 ) ϕ(2i+1)( r p , s p )      ϕ(2i+2)( n p , m p ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabew9aQjaacIcacaaIXaGaaiykaiabg2da9iaacIcacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadohadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaGjbVlabgEIizlaaysW7cqaHvpGAcaGGOaGaaGOmaiaacMcacqGH9aqpcaGGOaGaamOBamaaBaaaleaacaaIXaaabeaakiaacYcacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaqaaiabew9aQjaacIcacaaIYaGaamyAaiabgUcaRiaaigdacaGGPaGaeyypa0JaaiikaiaadkhadaWgaaWcbaGaamiCaaqabaGccaGGSaGaam4CamaaBaaaleaacaWGWbaabeaakiaacMcacaaMe8Uaey4jIKTaaGjbVlabew9aQjaacIcacaaIYaGaamyAaiabgUcaRiaaikdacaGGPaGaeyypa0Jaaiikaiaad6gadaWgaaWcbaGaamiCaaqabaGccaGGSaGaamyBamaaBaaaleaacaWGWbaabeaakiaacMcaaaaaaa@6FF3@

with  pmax{ ϕ 1 (1), ϕ 2 (1),, ϕ 1 (2i), ϕ 2 (2i)} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGymaiaacMcacaGGSaGaeqy1dO2aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaigdacaGGPaGaaiilaiablAciljaacYcacqaHvpGAdaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGOmaiaadMgacaGGPaGaaiilaiabew9aQnaaBaaaleaacaaIYaaabeaakiaacIcacaaIYaGaamyAaiaacMcacaGG9baaaa@553E@ we get a strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ such that

| a ϕ(2n) a ϕ(2n1) |ε  for all  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaaikdacaWGUbGaaiykaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiabew9aQjaacIcacaaIYaGaamOBaiabgkHiTiaaigdacaGGPaaabeaakiaacYhacqGHLjYScqaH1oqzcaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gaaaa@51E8@ .

From that we see that ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ is no Cauchy sequence.   Contradiction!

With [5.10.11] the uniquness of the limit is guaranteed for double sequences as well: If there were two different limits for the double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ the common sequence ( a nn ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGUbaabeaakiaacMcaaaa@3B4F@ e.g. will also allow two different limits. Thus we may note the convergence a nm g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4Qaam4zaaaa@3CCE@ in the more familiar way:

lim n,m a nm =g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad6gacaGGSaGaamyBaiabgkziUkabg6HiLcqabaGccaWGHbWaaSbaaSqaaiaad6gacaaMc8UaamyBaaqabaGccqGH9aqpcaWGNbaaaa@44ED@
 

Many properties of common sequences are now easily transferred using [5.10.9] to [5.10.12]. We start with the basic limit theorems:

Proposition:  

1. a nm a       b nm b a nm + b nm a+b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiaaysW7cqGHNis2caaMe8UaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamOyaiaaywW7cqGHshI3caaMf8UaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiabgUcaRiaadkgaaaa@5D01@ [5.10.13]
2. a nm a       b nm b a nm b nm ab MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiaaysW7cqGHNis2caaMe8UaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamOyaiaaywW7cqGHshI3caaMf8UaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOeI0IaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiabgkHiTiaadkgaaaa@5D17@ [5.10.14]
3. a nm a       b nm b a nm b nm ab MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiaaysW7cqGHNis2caaMe8UaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamOyaiaaywW7cqGHshI3caaMf8UaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyyXICTaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiabgwSixlaadkgaaaa@5FD1@ [5.10.15]
4. a nm a       b nm b a nm b nm a b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiaaysW7cqGHNis2caaMe8UaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamOyaiaaywW7cqGHshI3caaMf8+aaSaaaeaacaWGHbWaaSbaaSqaaiaad6gacaaMc8UaamyBaaqabaaakeaacaWGIbWaaSbaaSqaaiaad6gacaaMc8UaamyBaaqabaaaaOGaeyOKH46aaSaaaeaacaWGHbaabaGaamOyaaaaaaa@5B5D@  ,   if    b, b nm 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaacYcacaWGIbWaaSbaaSqaaiaad6gacaaMc8UaamyBaaqabaGccqGHGjsUcaaIWaaaaa@3E0E@ [5.10.16]

Proof:  As an example we prove 1.: For each strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ we have:

a ϕ(n) a       b ϕ(n) b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaeyOKH4QaamyyaiaaysW7cqGHNis2caaMe8UaamOyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaeyOKH4QaamOyaaaa@4A41@

From the first limit theorem we thus get (cf. [5.6.1]):  a ϕ(n) + b ϕ(n) a+b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaey4kaSIaamOyamaaBaaaleaacqaHvpGAcaGGOaGaamOBaiaacMcaaeqaaOGaeyOKH4QaamyyaiabgUcaRiaadkgaaaa@4550@ , but that means:

a nm + b nm a+b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4QaamyyaiabgUcaRiaadkgaaaa@4400@ .

But also all the important convergence criteria are transferred to double sequences without difficulty.

Proposition:  

1. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ convergent ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caGGOaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaaiykaaaa@40C7@ bounded [5.10.17]
2. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ monotone and bounded ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caGGOaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaaiykaaaa@40C7@ convergent [5.10.18]
3. ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ convergent ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caGGOaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaaiykaaaa@40C6@ Cauchy sequence [5.10.19]

Proof:  As an example again we only prove the first assertion:

( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ convergent
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ convergent for all strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@  [5.10.11]
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ( a ϕ(n) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaeqy1dOMaaiikaiaad6gacaGGPaaabeaakiaacMcaaaa@3BF6@ bounded for all strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@  [5.5.1]
MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ bounded  [5.10.9]

The two-dimensional nature of double sequences allows to create a further notion of convergence. This new concept will sometimes be beneficial for calculating the limit in [5.10.6].

Definition:  A double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@   is called row-convergent if the common sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is convergent for all fixed n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ . The numbers

lim m a nm MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad2gacqGHsgIRcqGHEisPaeqaaOGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaaaa@414E@
[5.10.20]

are called row limits. In an analogous way we introduce the notion column-convergent and the term column limit.

Consider:

  • Both versions of covergence, the new and the old one are not compatible:

    According to our eaxmple [5.10.8] the double sequence ( (1) n+m ( 1 n + 1 m )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaad2gaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiaacMcacaGGPaaaaa@4277@ e.g. tends to 0, but this sequence is neither row-convergent nor column-convergent. For (even) every fixed n the convergences

    (1) n+2m ( 1 n + 1 2m )= (1) n n + (1) n 2m (1) n n (1) n+2m+1 ( 1 n + 1 2m+1 )= (1) n n (1) n 2m+1 (1) n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaikdacaWGTbaaaOGaaiikamaalaaabaGaaGymaaqaaiaad6gaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaad2gaaaGaaiykaiabg2da9maalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaGaamOBaaaacqGHRaWkdaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaaaOqaaiaaikdacaWGTbaaaiabgkziUoaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaGaamOBaaaaaeaacaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaGaamyBaiabgUcaRiaaigdaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaGaamyBaiabgUcaRiaaigdaaaGaaiykaiabg2da9iabgkHiTmaalaaabaGaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGUbaaaaGcbaGaamOBaaaacqGHsisldaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaaaOqaaiaaikdacaWGTbGaey4kaSIaaGymaaaacqGHsgIRcqGHsisldaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaaaOqaaiaad6gaaaaaaaaa@7EBF@

    show that the sequence ( (1) n+m ( 1 n + 1 m )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaad2gaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbaaaiaacMcacaGGPaaaaa@4277@ has two different accumulation points and thus is divergent. This proves row-divergence and similarly we get column-divergence.

    The double sequence ( (1 1 n ) m ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGTbaaaOGaaiykaaaa@3CAA@ is row-convergent (  (1 1 n ) m 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad2gaaaGccqGHsgIRcaaIWaaaaa@3DF8@  ) and column-convergent (  (1 1 n ) m 1 m =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad2gaaaGccqGHsgIRcaaIXaWaaWbaaSqabeaacaWGTbaaaOGaeyypa0JaaGymaaaa@40E3@  ) but due to the next proposition it is not convergent.
     

Although - as just shown - both notions of convergence do not relate to each other, those convergent double sequences that are also row- and column-convergent play an important role. Actually they are the ones that allow to interchange the order of limit formation. Please note that from now on we no longer can support the difference between fixed and variable indices by using the italic and the normal format respectively.

Proposition:  Let the double sequence ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ converge to g. Then the following holds:

  1. If  ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is row-convergent the sequence of row limits will converge to g:

    lim n ( lim m a nm )=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOGaaiikamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWGTbGaeyOKH4QaeyOhIukabeaakiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcacqGH9aqpcaWGNbaaaa@4C07@

     
    [5.10.21]
  2. If  ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is column-convergent the sequence of column limits will converge to g:

    lim m ( lim n a nm )=g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad2gacqGHsgIRcqGHEisPaeqaaOGaaiikamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWGUbGaeyOKH4QaeyOhIukabeaakiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcacqGH9aqpcaWGNbaaaa@4C07@

     
    [5.10.22]
  3. If  ( a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcaaaa@3B4E@ is row-convergent and column-convergent the successive limits exist and are identical:

    lim n ( lim m a nm )= lim m ( lim n a nm ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOGaaiikamaaxababaGaciiBaiaacMgacaGGTbaaleaacaWGTbGaeyOKH4QaeyOhIukabeaakiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiaacMcacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamyBaiabgkziUkabg6HiLcqabaGccaGGOaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaaiykaaaa@5FC7@
    [5.10.23]

Proof:  We only show 1. because 2. is very similar and 3. is a direct result from 1. and 2.

1.  

We abbreviate  g n lim m a nm MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacaWGUbaabeaakiabg2da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWGTbGaeyOKH4QaeyOhIukabeaakiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaaaaa@4469@   and show: g n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacaWGUbaabeaakiabgkziUkaadEgaaaa@3A57@ . To that end we take an arbitrary ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ . As  a nm g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaaGPaVlaad2gaaeqaaOGaeyOKH4Qaam4zaaaa@3CCE@   there is an  n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ such that all  n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ satisfy:

| a nm g|< ε 2   for all  m n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiaaykW7caWGTbaabeaakiabgkHiTiaadEgacaGG8bGaeyipaWZaaSaaaeaacqaH1oqzaeaacaaIYaaaaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamyBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@4D80@

but that means  g ε 2 < a nm <g+ ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTmaalaaabaGaeqyTdugabaGaaGOmaaaacqGH8aapcaWGHbWaaSbaaSqaaiaad6gacaaMc8UaamyBaaqabaGccqGH8aapcaWGNbGaey4kaSYaaSaaaeaacqaH1oqzaeaacaaIYaaaaaaa@448A@ for these m and consequently we get for the limit g n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacaWGUbaabeaaaaa@3774@ :

g ε 2 g n g+ ε 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTmaalaaabaGaeqyTdugabaGaaGOmaaaacqGHKjYOcaWGNbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaam4zaiabgUcaRmaalaaabaGaeqyTdugabaGaaGOmaaaaaaa@4375@

So we have  | g n g| ε 2 <ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadEgadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGNbGaaiiFaiabgsMiJoaalaaabaGaeqyTdugabaGaaGOmaaaacqGH8aapcqaH1oqzaaa@422A@   for all n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ .

All the results developed so far for double sequences are of course valid for double series as well. We specially focus on [5.10.23] which we will restate in connection with absolute convergent double series. We start studying double series with positive members.

Proposition:  The double series ( i=0 n j=0 m a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@4701@ with positive members is convergent if and only if it is bounded. In that case the following estimate holds:

i=0 n j=0 m a ij i=0 j=0 a ij   für alle  n,m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyizIm6aaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiaacYcacaWGTbGaeyicI4SaeSyfHukaaa@65C8@
[5.10.24]

Proof:   This direction " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@37C6@ " is valid due to [5.10.17].

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@37C2@ ":  As all the numbers a ij MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaaaa@39E3@ are positive the double series is an increasing sequence thus convergent according to [5.10.18].

[5.10.11] allows for each strictly increasing ϕ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOgaaa@3735@ to calculate the limit according to the proof of [5.7.1] as the supremum of the increasing ([5.10.10]) common sequence ( i=0 ϕ 1 (n) j=0 ϕ 2 (n) a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamOAaiabg2da9iaaicdaaeaacqaHvpGAdaWgaaadbaGaaGOmaaqabaWccaGGOaGaamOBaiaacMcaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeqy1dO2aaSbaaWqaaiaaigdaaeqaaSGaaiikaiaad6gacaGGPaaaniabggHiLdGccaGGPaaaaa@4F33@ . For ϕ:n(n,n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dOMaaiOoaiaad6gacqWIMgsycaGGOaGaamOBaiaacYcacaWGUbGaaiykaaaa@3E8E@ e.g. we get for all n, m (taking k=max{n,m} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacaWGUbGaaiilaiaad2gacaGG9baaaa@3EC8@ ):

i=0 n j=0 m a ij i=0 k j=0 k a ij i=0 j=0 a ij MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaad2gaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyizIm6aaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaadUgaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaam4AaaqdcqGHris5aOGaeyizIm6aaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@6A7E@

With this result we are now able to state and prove [5.9.13] for double series.

Proposition:  

Every absolute convergent double series is convergent. [5.10.25]

Proof:  As | a ij |± a ij 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaakiaacYhacqGHXcqScaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaGccqGHLjYScaaIWaaaaa@44DF@ the double series ( i=0 n j=0 m 1 2 (| a ij |+ a ij ) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaiabgUcaRiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaakiaacMcaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@515C@ and ( i=0 n j=0 m 1 2 (| a ij | a ij ) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaiabgkHiTiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaakiaacMcaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@5167@ have positive members so that [5.10.24] provides the following estimates:

i=0 n j=0 m 1 2 (| a ij |± a ij ) i=0 n j=0 m 1 2 (| a ij |+| a ij |) = i=0 n j=0 m | a ij | i=0 j=0 | a ij | MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaaeWbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaacYhacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaGccaGG8bGaeyySaeRaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiykaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgsMiJoaaqahabaWaaabCaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaiabgUcaRiaacYhacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaGccaGG8bGaaiykaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9maaqahabaWaaabCaeaacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgsMiJoaaqahabaWaaabCaeaacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaaWcbaGaamOAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@97B4@

They guarantee (again using [5.10.24]) the convergence of both double series and due to [5.10.14] also the convergence of

( i=0 n j=0 m a ij )=( i=0 n j=0 m 1 2 (| a ij |+ a ij ) )( i=0 n j=0 m 1 2 (| a ij | a ij ) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGH9aqpcaGGOaWaaabCaeaadaaeWbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaacYhacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaGccaGG8bGaey4kaSIaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiykaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGHsislcaGGOaWaaabCaeaadaaeWbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaacYhacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaGccaGG8bGaeyOeI0IaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiykaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@80E5@ .

 

Proposition:  If the series ( i=0 n j=0 m | a ij | ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@4916@ is bounded the following equality holds:

i=0 j=0 a ij = j=0 i=0 a ij MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaaeWbqaaiaadggadaWgaaWcbaGaamyAaiaaykW7caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@58DD@
[5.10.26]

Proof:  Together with ( i=0 n j=0 m | a ij | ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaGG8bGaamyyamaaBaaaleaacaWGPbGaaGPaVlaadQgaaeqaaOGaaiiFaaWcbaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@4916@ all of it's row series and all of it's column series are increasing and bounded, thus convergent ([5.10.18] and [5.7.1] respectively). According to [5.10.25] and [5.9.13] this is also true for the series ( i=0 n j=0 m a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaabCaeaacaWGHbWaaSbaaSqaaiaadMgacaaMc8UaamOAaaqabaaabaGaamOAaiabg2da9iaaicdaaeaacaWGTbaaniabggHiLdaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@4701@ so that the assertion follows from [5.10.23].


5.9. 5.11.