5.2. Rekursive Folgen und das Induktionsprinzip


Durch die Wahl der Menge MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3871@ als Definitionsbereich für unsere Folgen ergeben sich weit reichende Möglichkeiten, die i.w. auf die reichhaltige Rechen- und Anordnungstruktur der natürlichen Zahlen zurückzuführen sind. Diese Struktur wird mit der Konstruktion von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ im Rahmen der Mengenlehre festegelegt. Wir übernehmen von dort die folgende Charakterisierung von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ :

Bemerkung:  
  1. k k=0k=n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLkabgkDiElaadUgacqGH9aqpcaaIWaGaeyikIOTaam4Aaiabg2da9iaad6gacqGHRaWkcaaIXaaaaa@450C@   für ein  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ .
     
  2. Jede nicht-leere Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ besitzt ein kleinstes Element.
[5.2.1]

Das bedeutet nun:

  • Jede von 0 verschiedene natürliche Zahl ist Nachfolger einer anderen natürlichen Zahl.
     
  • Jede nicht-leere Auswahl von natürlichen Zahlen besitzt ein Anfangselement.

Diese beiden Eigenschaften beinhalten bereits die Vorstellung, dass man alle natürlichen Zahlen, beginnend bei 0, durch fortlaufendes Weiterzählen erhalten kann. Das Induktionsprinzip präzisiert diese Vorstellung:

Bemerkung (Induktionsprinzip):  Ist A eine Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ mit den beiden folgenden Eigenschaften
  • 0A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeaaaa@38ED@
  • nAn+1A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeaaaa@405D@
[5.2.2]
so ist A bereits ganz MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ , d.h.:  A= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iablwriLcaa@3921@ .

Beweis:  Wir gehen indirekt vor und nehmen an: A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgcMi5kablwriLcaa@39E2@ . Dann ist aber die Restmenge \A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHuQaaiixaiaadgeaaaa@38FB@ eine nicht-leere Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ , besitzt also nach 2. in [5.2.1] ein kleinstes Element, etwa k\A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablwriLkaacYfacaWGbbaaaa@3B6F@ . Da 0A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeaaaa@38ED@ , ist k0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgcMi5kaaicdaaaa@395A@ . Also gibt es gemäß 1. in [5.2.1] ein n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ , so dass k=n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaad6gacqGHRaWkcaaIXaaaaa@3A6F@ . Insbesondere ist n<k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgYda8iaadUgaaaa@38D0@ . Da aber k kleinstes Element von \A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHuQaaiixaiaadgeaaaa@38FB@ ist, kann n nicht zu \A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHuQaaiixaiaadgeaaaa@38FB@ gehören. Also ist nA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeaaaa@3926@ und daher gehört nach der 2. Bedingung in [5.2.2] auch k=n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iaad6gacqGHRaWkcaaIXaaaaa@3A6F@ zu A.   Widerspruch!

 
Das Induktionsprinzip ist ein ungemein wirkungsvolles Instrument. Eine ganze Beweistechnik, der Beweis per Induktion, baut auf dieses Prinzip. Wir zeigen dies in einem ersten Beispiel am Beweis einer sog. Summenformel: Addiert man die ungeraden natürlichen Zahlen von 1 bis 2n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaad6gacqGHRaWkcaaIXaaaaa@3935@ der Reihe nach, so ergeben sich für verschiedene Werte von n die folgenden Ergebnisse:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
1
= 1
1 + 3
= 4
1 + 3 + 5
= 9
1 + 3 + 5 + 7
= 16
1 + 3 + 5 + 7 + 9
= 25
1 + 3 + 5 + 7 + 9 + 11
= 36

Augenscheinlich ist in diesen sechs Fällen der Summenwert stets eine Quadratzahl, und zwar das Quadrat der Anzahl n + 1 der Summanden! Wäre dies für jedes n genauso, hätte man insbesondere bei großen Zahlen einen erheblichen Rechenvorteil. Ein herkömmlicher Beweis ist für diese Vermutung aber nicht zu führen, denn hier sind unendlich viele Einzelaussagen zu beweisen; mit Hilfe des Induktionsprinzips jedoch kann man genau das erreichen.

Beispiel:  Für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ gilt:
 
i=0 n (2i+1) = (n+1) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@464E@
[5.2.3]

Beweis:   Die Aufgabe läßt sich, wenn auch etwas umständlich, folgendermaßen formulieren: Weise nach, dass die Menge

A{ n| i=0 n (2i+1) = (n+1) 2 } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iaacUhacaWGUbGaeyicI4SaeSyfHuQaaiiFamaaqahabaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaakiaac2hacqGHckcZcqWIvesPaaa@526F@ ,

also die Menge derjenigen natürlichen Zahlen, die die Behauptung in [5.2.3] erfüllen, ganz MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ ist. Dazu müssen wir aber nur nachweisen, dass A die beiden Bedingungen des Induktionsprinzips erfüllt!

  • 0A: i=0 0 (2i+1) =1= (0+1) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaGaaiykaaWcbaGaamyAaiabg2da9iaaicdaaeaacaaIWaaaniabggHiLdGccqGH9aqpcaaIXaGaeyypa0JaaiikaiaaicdacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaa@4B5F@
     
  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@ Sei nA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeaaaa@3926@ . Für dieses n ist also die Gleichung i=0 n (2i+1) = (n+1) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@464E@ tatsächlich wahr. Um nun n + 1 ebenfalls als Element von A zu bestätigen, muss jetzt die Gleichung i=0 n+1 (2i+1 )= (n+1+1) 2 = (n+2) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gacqGHRaWkcaaIXaaaniabggHiLdGccaGGPaGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaGGOaGaamOBaiabgUcaRiaaikdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@4F6B@ nachgewiesen werden:
     
    i=0 n+1 (2i+1) = i=0 n (2i+1) +2(n+1)+1 = (n+1) 2 +2(n+1)+1 = (n+1+1) 2 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaamaaqahabaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaaigdaa0GaeyyeIuoaaOqaaiabg2da9maaqahabaGaaiikaiaaikdacaWGPbGaey4kaSIaaGymaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaey4kaSIaaGOmaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGHRaWkcaaIXaaabaaabaGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaey4kaSIaaGymaaqaaaqaaiabg2da9iaacIcacaWGUbGaey4kaSIaaGymaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaaaaa@6957@

    Also ist n+1A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdacqGHiiIZcaWGbbaaaa@3AC3@ .

Gemäß Induktionsprinzip weiß man nun: A= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iablwriLcaa@3921@ . Also ist unsere Summenformel tatsächlich für alle natürlichen Zahlen gültig.

Beachte:

  • Die gerade im Beweis vorgenommene Zerlegung, das Abspalten des letzten Summanden,
     

    i=0 n+1 (2i+1 )= i=0 n (2i+1 )+ i=n+1 n+1 (2i+1 )= i=0 n (2i+1 )+2(n+1)+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gacqGHRaWkcaaIXaaaniabggHiLdGccaGGPaGaeyypa0ZaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGHRaWkdaaeWbqaaiaacIcacaaIYaGaamyAaiabgUcaRiaaigdaaSqaaiaadMgacqGH9aqpcaWGUbGaey4kaSIaaGymaaqaaiaad6gacqGHRaWkcaaIXaaaniabggHiLdGccaGGPaGaeyypa0ZaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGHRaWkcaaIYaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiabgUcaRiaaigdaaaa@6F3F@
     
    ist bei Summen und ähnlichen strukturierten Ausdrücken der Standardtrick.

  • Es ist ein bei Induktionsbeweisen nicht zu unterschätzender Vorteil, dass man die zu beweisende Aussage - hier die Gleichung i=0 n+1 (2i+1 )= (n+1+1) 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaGGOaGaaGOmaiaadMgacqGHRaWkcaaIXaaaleaacaWGPbGaeyypa0JaaGimaaqaaiaad6gacqGHRaWkcaaIXaaaniabggHiLdGccaGGPaGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@4988@ - bereits zu Beginn durch "Einsetzen von n + 1" notieren kann.


 

Wir üben das Induktionsprinzip an weiteren Summenformeln und anderen Beispielen. Dabei verzichten wir auf die explizite Bildung der Menge A und benutzen die Ausdrücke 0A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeaaaa@38ED@ bzw. nAn+1A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeaaaa@405D@ nur noch als Markierungen für die beiden Induktionsschritte:
 

  • 0A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeaaaa@38ED@   für den Induktionsanfang
     
  • nAn+1A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeaaaa@405D@   für den Induktionsschluss.
     

Bemerkung (Summenformel für die geometrische Reihe):  Es sei q,q1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgIGiolabl2riHkaacYcacaWGXbGaeyiyIKRaaGymaaaa@3DFB@ , dann gilt für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ :
 
i=0 n q i = 1 q n+1 1q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaacaWGXbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacaaIXaGaeyOeI0IaamyCaaaaaaa@46F5@
[5.2.4]

Beweis:  

  • 0A: i=0 0 q i = q 0 =1= 1 q 0+1 1q . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aWaaabCaeaacaWGXbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaaGimaaqdcqGHris5aOGaeyypa0JaamyCamaaCaaaleqabaGaaGimaaaakiabg2da9iaaigdacqGH9aqpdaWcaaqaaiaaigdacqGHsislcaWGXbWaaWbaaSqabeaacaaIWaGaey4kaSIaaGymaaaaaOqaaiaaigdacqGHsislcaWGXbaaaaaa@4EF3@
     
  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@

    i=0 n+1 q i = i=0 n q i + q n+1 = 1 q n+1 1q + q n+1 = 1 q n+1 +(1q) q n+1 1q = 1 q n+1 + q n+1 q n+2 1q = 1 q n+1+1 1q . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaWaaabCaeaacaWGXbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaaigdaa0GaeyyeIuoaaOqaaiabg2da9maaqahabaGaamyCamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacaaIXaGaeyOeI0IaamyCaaaacqGHRaWkcaWGXbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaOqaaaqaaiabg2da9maalaaabaGaaGymaiabgkHiTiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaey4kaSIaaiikaiaaigdacqGHsislcaWGXbGaaiykaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaGaaGymaiabgkHiTiaadghaaaaabaaabaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHRaWkcaWGXbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaaGcbaGaaGymaiabgkHiTiaadghaaaaabaaabaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHRaWkcaaIXaaaaaGcbaGaaGymaiabgkHiTiaadghaaaaaaaaa@89A9@

Die Summenformel für die geometrische Reihe ist in der Analysis ein äußerst wichtiges Ergebnis. Dies trifft genauso auf die in der folgenden Bemerkung vorgestellte Verallgemeinerung der ersten binomischen Formel zu. Zu ihrer Formulierung benötigt man die  Binomialkoeffizienten  (T n i )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaaaaa@3930@ , zu ihrem (etwas umfangreichen) Beweis zwei ihrer Eigenschaften, sowie den "Trick" der Indexverschiebung bei der Summation.

Bemerkung (Allgemeines Binomialtheorem):  Es sei a,b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacYcacaWGIbGaeyicI4SaeSyhHekaaa@3B5A@ , dann gilt für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ :
 
(a+b) n = i=0 n (T n i )T a ni b i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9maaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aaaa@4B2D@
[5.2.5]

Beweis:  

  • 0A: (a+b) 0 =1=(T 0 0 )T a 00 b 0 = i=0 0 (T 0 i )T a 0i b i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aGaaiikaiaadggacqGHRaWkcaWGIbGaaiykamaaCaaaleqabaGaaGimaaaakiabg2da9iaaigdacqGH9aqpcaGGOaqbaeqabiqaaaqaaiaaicdaaeaacaaIWaaaaiaacMcacaWGHbWaaWbaaSqabeaacaaIWaGaeyOeI0IaaGimaaaakiaadkgadaahaaWcbeqaaiaaicdaaaGccqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaaGimaaqaaiaadMgaaaGaaiykaiaadggadaahaaWcbeqaaiaaicdacqGHsislcaWGPbaaaOGaamOyamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaaicdaa0GaeyyeIuoaaaa@5902@ .
     
  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@

    (a+b) n+1 = (a+b) n (a+b) =( i=0 n (T n i )T a ni b i )a+( i=0 n (T n i )T a ni b i )b = i=0 n (T n i )T a n+1i b i + i=0 n (T n i )T a ni b i+1 = i=0 n (T n i )T a n+1i b i + i=1 n+1 (T n i1 )T a n+1i b i =(T n 0 )T a n+10 b 0 + i=1 n (T n i )T a n+1i b i + i=1 n (T n i1 )T a n+1i b i +(T n n )T a 0 b n+1 =(T n 0 )T a n+10 b 0 + i=1 n ((T n i )T+(T n i1 )T) a n+1i b i +(T n n )T a 0 b n+1 =(T n+1 0 )T a n+10 b 0 + i=1 n (T n+1 i )T a n+1i b i +(T n+1 n+1 )T a 0 b n+1 = i=0 n+1 (T n+1 i )T a n+1i b i . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabGGaaaaaaeaacaGGOaGaamyyaiabgUcaRiaadkgacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaOqaaiabg2da9iaacIcacaWGHbGaey4kaSIaamOyaiaacMcadaahaaWcbeqaaiaad6gaaaGccaGGOaGaamyyaiabgUcaRiaadkgacaGGPaaabaaabaGaeyypa0JaaiikamaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiykaiaadggacqGHRaWkcaGGOaWaaabCaeaacaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaiaacMcacaWGHbWaaWbaaSqabeaacaWGUbGaeyOeI0IaamyAaaaakiaadkgadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaGaamOyaaqaaaqaaiabg2da9maaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaWGPbaaaOGaamOyamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbGaey4kaSIaaGymaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoaaOqaaaqaaiabg2da9maaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaWGPbaaaOGaamOyamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamyAaaaakiaadkgadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaey4kaSIaaGymaaqdcqGHris5aaGcbaaabaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbaabaGaaGimaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaaIWaaaaOGaamOyamaaCaaaleqabaGaaGimaaaakiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaamyyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdacqGHsislcaWGPbaaaOGaamOyamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaaqahabaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaamyAaaaakiaadkgadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHRaWkcaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaWGUbaaaiaacMcacaWGHbWaaWbaaSqabeaacaaIWaaaaOGaamOyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaaaeaacqGH9aqpcaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaaIWaaaaiaacMcacaWGHbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaiabgkHiTiaaicdaaaGccaWGIbWaaWbaaSqabeaacaaIWaaaaOGaey4kaSYaaabCaeaacaGGOaGaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaaaacaGGPaGaey4kaSIaaiikauaabeqaceaaaeaacaWGUbaabaGaamyAaiabgkHiTiaaigdaaaGaaiykaiaacMcacaWGHbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey4kaSIaaiikauaabeqaceaaaeaacaWGUbaabaGaamOBaaaacaGGPaGaamyyamaaCaaaleqabaGaaGimaaaakiaadkgadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0JaaiikauaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaaicdaaaGaaiykaiaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaGaeyOeI0IaaGimaaaakiaadkgadaahaaWcbeqaaiaaicdaaaGccqGHRaWkdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGPbaaaiaacMcacaWGHbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey4kaSIaaiikauaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gacqGHRaWkcaaIXaaaaiaacMcacaWGHbWaaWbaaSqabeaacaaIWaaaaOGaamOyamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaaaeaacqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGPbaaaiaacMcacaWGHbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgaaaGccaWGIbWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaaigdaa0GaeyyeIuoaaaaaaa@5EFD@

Summenformeln sind bei weitem nicht die einzigen Aussagen, die per Induktion gesichert werden können. Im folgenden Beispiel etwa werden wir eine Ungleichung beweisen.

Bemerkung (Bernoullische Ungleichung):  Für jede reelle Zahl x1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgwMiZkabgkHiTiaaigdaaaa@3A54@ und jedes n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ gilt:

(1+x) n 1+nx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiabgwMiZkaaigdacqGHRaWkcaWGUbGaamiEaaaa@4059@
[5.2.6]

Beweis:  

  • 0A: (1+x) 0 =11=1+0x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaaGimaaaakiabg2da9iaaigdacqGHLjYScaaIXaGaeyypa0JaaGymaiabgUcaRiaaicdacqGHflY1caWG4baaaa@4975@ .

  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@ Sei jetzt die Ungleichung (1+x) n 1+nx MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiabgwMiZkaaigdacqGHRaWkcaWGUbGaamiEaaaa@4059@ bereits gültig. Multipliziert man sie mit der (wegen x1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgwMiZkabgkHiTiaaigdaaaa@3A54@ ) positiven Zahl 1+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiaadIhaaaa@3883@ , erhält man:

    (1+x) n (1+x)(1+nx)(1+x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiaacIcacaaIXaGaey4kaSIaamiEaiaacMcacqGHLjYScaGGOaGaaGymaiabgUcaRiaad6gacaWG4bGaaiykaiaacIcacaaIXaGaey4kaSIaamiEaiaacMcaaaa@4998@ ,

    so dass wir die folgende Ungleichungskette aufstellen können:

    (1+x) n+1 = (1+x) n (1+x) (1+nx)(1+x) =1+nx+x+n x 2 1+nx+x,   denn n x 2 0 =1+(n+1)x. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaacqGH9aqpcaGGOaGaaGymaiabgUcaRiaadIhacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykaaqaaaqaaiabgwMiZkaacIcacaaIXaGaey4kaSIaamOBaiaadIhacaGGPaGaaiikaiaaigdacqGHRaWkcaWG4bGaaiykaaqaaaqaaiabg2da9iaaigdacqGHRaWkcaWGUbGaamiEaiabgUcaRiaadIhacqGHRaWkcaWGUbGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabgwMiZkaaigdacqGHRaWkcaWGUbGaamiEaiabgUcaRiaadIhacaqGKbGaaeyzaiaab6gacaqGUbGaamOBaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHLjYScaaIWaaabaaabaGaeyypa0JaaGymaiabgUcaRiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaWG4bGaaeOlaaaaaaa@7427@

Der Startwert 0 beim Induktionsprinzip ist durch die Menge MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ festgelegt. Es ist allerdings möglich das Induktionsprinzip so zu modifizieren, dass eine beliebige ganze Zahl k als Startwert eingesetzt werden kann:

Bemerkung:  Ist k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolablssiIcaa@39D5@ und A eine Teilmenge von k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSijHi6aaWbaaSqabeaacqGHLjYScaWGRbaaaaaa@3A44@ mit den beiden folgenden Eigenschaften
  • kA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgIGiolaadgeaaaa@3923@
  • nAn+1A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeaaaa@405D@
[5.2.7]
so ist bereits A= k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iablssiIoaaCaaaleqabaGaeyyzImRaam4Aaaaaaaa@3C10@ .

Beweis:  Setzt man A'{ik|iA} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaacEcacqGH9aqpcaGG7bGaamyAaiabgkHiTiaadUgacaGG8bGaamyAaiabgIGiolaadgeacaGG9baaaa@4163@ , so ist A' eine Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyfHukaaa@3755@ , die die Zahl 0 enthält und mit jedem n auch die nächste Zahl n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ . Nach dem Induktionsprinzip ist also A'= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaacEcacqGH9aqpcqWIvesPaaa@39CC@ und somit A= k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iablssiIoaaCaaaleqabaGaeyyzImRaam4Aaaaaaaa@3C10@ .


 

Mit dem Induktionsprinzip sehr eng verwandt ist eine bei Folgen oft eingesetzte Konstruktionsmethode, nämlich die Folgenangabe per Rekursion. Dabei definiert man eine Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in zwei Schritten: zunächst setzt man einen Wert für das erste Folgenglied a 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaaaa@37B6@ fest und gibt anschließend an, wie ein beliebiges Folgenglied a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@398B@ aus seinem Vorgänger a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ entstehen soll. So könnte man z.B. eine Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ angeben durch die Festsetzung:

a 1 1 a n+1 2 a n . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaa@42A2@

Jedes neue Folgenglied entsteht also durch Verdoppeln des Vorgängers, so dass man der Reihe nach die ersten Folgenglieder errechnen kann:

( a n )=(1,2,4,8,16,32,). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikaiaaigdacaGGSaGaaGOmaiaacYcacaaI0aGaaiilaiaaiIdacaGGSaGaaGymaiaaiAdacaGGSaGaaG4maiaaikdacaGGSaGaeSOjGSKaaiykaaaa@46DD@

Mit der folgenden Bemerkung führen wir das Rekursionsprinzip ein:

Bemerkung (Rekursionsprinzip):  Für jedes cA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolaadgeaaaa@391B@ und jede Funktion  f: ×AA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgEna0kaadgeacqGHsgIRcaWGbbaaaa@3FB4@ wird durch die Angabe

a 1 c a n+1 f(n, a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaadogacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadAgacaGGOaGaamOBaiaacYcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@4604@
[5.2.8]

eine Folge in A definiert.

Beweis:  Es ist zu überlegen, dass mit [5.2.8] eine Funktion  a: A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaacQdacqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgkziUkaadgeaaaa@3CD2@   gegeben ist. Zunächst zeigen wir dass jedem n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@  ein Element aus A zugeordnet ist und bilden dazu die Menge

D{n |es gibt ein   a n A   gemäß [5.2.8]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9iaacUhacaWGUbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaGccaGG8bGaaeyzaiaabohacaqGGaGaae4zaiaabMgacaqGIbGaaeiDaiaabccacaqGLbGaaeyAaiaab6gacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyicI4SaamyqaiaabEgacaqGLbGaaeyBaiaabsoacaqGFdGaaeiiaiaabUfacaqG1aGaaeOlaiaabkdacaqGUaGaaeioaiaab2facaGG9baaaa@592B@ .

Da a 1 A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabgIGiolaadgeaaaa@3A0A@ festgelegt ist, weiß man: 1D MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgIGiolaadseaaaa@38F1@ . Ist ferner nD MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadseaaaa@3929@ , also a n A MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgIGiolaadgeaaaa@3A42@ gegeben, so wird über die Rekursionsvorschrift auch der Nachfolgerzahl n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ ein Bild aus A zugewiesen, d.h. aber n+1D MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdacqGHiiIZcaWGebaaaa@3AC6@ . Nach dem (erweiterten) Induktionsprinzip ist damit D= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2da9iablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A40@ .

Als nächstes zeigen wir, dass jedem n auch nur ein Bild zugewiesen ist und setzen dabei wieder das Induktionsprinzip ein: Für die Menge

E{n |es gibt genau einen Wert   a n A  gemäß [5.2.8]} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iaacUhacaWGUbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaGccaGG8bGaaeyzaiaabohacaqGGaGaae4zaiaabMgacaqGIbGaaeiDaiaabccacaqGNbGaaeyzaiaab6gacaqGHbGaaeyDaiaabccacaqGLbGaaeyAaiaab6gacaqGLbGaaeOBaiaabccacaqGxbGaaeyzaiaabkhacaqG0bGaamyyamaaBaaaleaacaWGUbaabeaakiabgIGiolaadgeacaqGNbGaaeyzaiaab2gacaqGKdGaae43aiaabccacaqGBbGaaeynaiaab6cacaqGYaGaaeOlaiaabIdacaqGDbGaaiyFaaaa@6498@

hat man nämlich: 1E MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgIGiolaadweaaaa@38F2@ , denn für kein n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ ist 1=n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabg2da9iaad6gacqGHRaWkcaaIXaaaaa@3A3A@ , so dass außer über die Festsetzung a 1 =c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaadogaaaa@39AE@ in [5.2.8] keine weitere Zuweisung erfolgt ist. Ist nun nE MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadweaaaa@392A@ , also a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ eindeutig definiert, so gibt es auch nur einen Wert   f(n, a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGUbGaaiilaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3BDF@ (denn  f ist ja eine Funktion!). Schließlich hat n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ auch nur einen Vorgänger, nämlich n, so dass auch a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@398B@ eindeutig erklärt ist. Also ist auch n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ in E. Insgesamt ist daher E= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2da9iablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A41@ .

Beachte:

  • Rekursiv notierte Folgen werden selten über die expliziten Daten c und  f angegeben sondern oft in der Form unseres Eingangsbeispiels. Beide Schreibweisen lassen sich aber ineinander überführen. So wird etwa die Angabe  a 1 =1 a n+1 =2 a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaa@42A2@   zu:

    c=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaaigdaaaa@3892@ und  f: × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgEna0kabl2riHkabgkziUkabl2riHcaa@4108@ ist gegeben durch  f(n,x)=2x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGUbGaaiilaiaadIhacaGGPaGaeyypa0JaaGOmaiaadIhaaaa@3D8C@ .

    Umgekehrt schreibt man z.B. c=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaaicdaaaa@3891@ und  f: × MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIvesPdaahaaWcbeqaaiabgEHiQaaakiabgEna0kabl2riHkabgkziUkabl2riHcaa@4108@ , gegeben durch  f(n,x)=n+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGUbGaaiilaiaadIhacaGGPaGaeyypa0JaamOBaiabgUcaRiaadIhaaaa@3EA5@ , als

    a 1 =0 a n+1 =n+ a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaad6gacqGHRaWkcaWGHbWaaSbaaSqaaiaad6gaaeqaaaaa@43BA@ .
     

  • Das Rekursionsprinzip läßt sich - wie der Folgenbegriff und das Induktionsprinzip auch - auf Funktionen der Art  f: k ×AA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIKeIOdaahaaWcbeqaaiabgwMiZkaadUgaaaGccqGHxdaTcaWGbbGaeyOKH4Qaamyqaaaa@4187@ erweitern.
     

Der große Vorteil des Rekursionsprinzips zeigt sich, wenn man "dynamische" Situationen beschreiben will. Weiß man z.B. dass eine bestimmte Bakterienart eine Stunde benötigt, um ihren Bestand zu verdoppeln, so wird man - von einem Bakterium ausgehend - die Anzahl a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaa@37EE@ der zu Beginn der n-ten Stunde vorhandenen Bakterien (idealisiert) durch unsere erste Rekursion angeben können.

Als Nachteil gilt bei rekursiven Folgen, die Schwierigkeit weit hinten liegende Folgenglieder zu ermitteln. Um etwa die Größe der Bakterienpopulation nach 100 Stunden zu ermitteln, müssen zuvor 100 Folgenglieder der Reihe nach ermittelt werden!

Wir üben zunächst das Rekursionsprinzip an einigen Beispielen. Interessant ist dabei die Beobachtung, dass allein eine Änderung des ersten Folgenglieds zu einer völlig neuen Folge führen kann.

Beispiel:  

  • a 1 2 a n+1 3 a n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaaiodacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaGOmaaaa@4457@   erzeugt die Folge  (2,4,10,28,82,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaikdacaGGSaGaaGinaiaacYcacaaIXaGaaGimaiaacYcacaaIYaGaaGioaiaacYcacaaI4aGaaGOmaiaacYcacqWIMaYscaGGPaaaaa@41BF@  , denn

    a 2 =3 a 1 2=322=4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iaaiodacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiabg2da9iaaiodacqGHflY1caaIYaGaeyOeI0IaaGOmaiabg2da9iaaisdaaaa@453A@ ,

    a 3 =3 a 2 2=342=10 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIZaaabeaakiabg2da9iaaiodacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaGOmaiabg2da9iaaiodacqGHflY1caaI0aGaeyOeI0IaaGOmaiabg2da9iaaigdacaaIWaaaaa@45F5@ ,

    a 4 =3 a 3 2=3102=28 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaI0aaabeaakiabg2da9iaaiodacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOmaiabg2da9iaaiodacqGHflY1caaIXaGaaGimaiabgkHiTiaaikdacqGH9aqpcaaIYaGaaGioaiablAcilbaa@47D9@

  • a 1 1 a n+1 3 a n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaaiodacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaGOmaaaa@4456@   erzeugt die Folge  (1,1,1,1,1,1,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGymaiaacYcacaaIXaGaaiilaiaaigdacaGGSaGaaGymaiaacYcacaaIXaGaaiilaiablAciljaacMcaaaa@40E6@  .

  • a 1 1 2 a n+1 1 a n +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaey4jIKTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaaGymaaaaaaa@4524@   erzeugt die Folge  ( 1 2 , 2 3 , 3 5 , 5 8 , 8 13 ,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiilamaalaaabaGaaGOmaaqaaiaaiodaaaGaaiilamaalaaabaGaaG4maaqaaiaaiwdaaaGaaiilamaalaaabaGaaGynaaqaaiaaiIdaaaGaaiilamaalaaabaGaaGioaaqaaiaaigdacaaIZaaaaiaacYcacqWIMaYscaGGPaaaaa@444B@  .
     
  • a 0 1 a n+1 a n (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1caGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaa@4822@   liefert die Folge der Fakultäten:

    (1,1,2,6,24,120,720,5.040,) n0 = (n!) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaaiAdacaGGSaGaaGOmaiaaisdacaGGSaGaaGymaiaaikdacaaIWaGaaiilaiaaiEdacaaIYaGaaGimaiaacYcacaaI1aGaaiOlaiaaicdacaaI0aGaaGimaiaacYcacqWIMaYscaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGUbGaaiyiaiaacMcadaWgaaWcbaGaamOBaiabgwMiZkaaicdaaeqaaaaa@559A@  .

Zwei spezielle rekursive Folgen zeichnen wir durch einen eigenen Namen aus.

Definition:  Es sei  c,d,q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaacYcacaWGKbGaaiilaiaadghacqGHiiIZcqWIDesOaaa@3D04@ . Eine rekursive gegebene Folge ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@ der Form

  • a 0 c a n+1 a n +d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadogacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGKbaaaa@43E7@   heißt arithmetisch.
     
[5.2.9]
  • a 0 c a n+1 a n q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadogacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1caWGXbaaaa@455C@   heißt geometrisch.
     
[5.2.10]

Beachte:

  • Die neuen Folgenglieder einer arithmetischen Folge entstehen also durch Addition des konstanten Summanden d.

    Die neuen Folgenglieder einer geometrischen Folge entstehen durch Multiplikation mit dem konstanten Faktor q.
     

Bemerkung:  

  1. ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist arithmetisch

    MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSnaaa@3845@ es gibt ein d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabgIGiolabl2riHcaa@39C6@ , so dass  ( a n ) n0 = ( a 0 +nd) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaadsgacaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@478C@  .
     

[5.2.11]
 
  1. ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist geometrisch

    MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSnaaa@3845@ es gibt ein q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgIGiolabl2riHcaa@39D3@ , so dass  ( a n ) n0 = ( a 0 q n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaamyCamaaCaaaleqabaGaamOBaaaakiaacMcadaWgaaWcbaGaamOBaiabgwMiZkaaicdaaeqaaaaa@4938@  .

[5.2.12]

Beweis:  Wir zeigen nur 1., denn die zweite Aussage ist i.W. nur die multiplikative Kopie der ersten. Die Äquivalenz teilen wir dabei in zwei Schritte auf.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Es gibt also reelle Zahlen c und d, so dass

a 0 =c a n+1 = a n +d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadogacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGKbaaaa@43E7@ .

Wir zeigen jetzt per Induktion:  a n = a 0 +nd MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGUbGaamizaaaa@3D92@   für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ .

  • 0A: a 0 = a 0 +0d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIWaGaeyyXICTaamizaaaa@432C@ .

  • nAn+1A: a n+1 = a n +d= a 0 +nd+d= a 0 +(n+1)d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamizaiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGUbGaamizaiabgUcaRiaadsgacqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaadsgaaaa@599C@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Setzt man jetzt

b 0 a 0 b n+1 b n +d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHNis2caWGIbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadkgadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGKbaaaa@44D8@ ,

so ist dadurch eine arithmetische Folge ( b n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF1@ gegeben, die nach dem gerade bewiesenen Teil die Gleichung ( b n ) n0 = ( b 0 +nd) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaadsgacaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@478E@ erfüllt. Dies aber können wir weiter schreiben zu:

( a n ) n0 = ( a 0 +nd) n0 = ( b 0 +nd) n0 = ( b n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaadsgacaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOBaiaadsgacaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaiykamaaBaaaleaacaWGUbGaeyyzImRaaGimaaqabaaaaa@5A41@  .

( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist also mit einer arithmetischen Folge identisch und somit selbst arithmetisch.

Arithmetische und geometrische Folgen besitzen einige interessante Eigenschaften.

  • Da a n+1 = a n +d a n+1 a n =d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamizaiabgsDiBlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9iaadsgaaaa@4968@ , ist bei arithmetischen Folgen ist die Differenz zweier aufeinander folgender Glieder konstant:

    ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist arithmetisch a n+1 a n =d   für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaamizaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiabgIGiolablwriLcaa@4C69@ .

    In der nächsten Bemerkung zeigen wir:
    Die Glieder einer arithmetischen Folge sind das arithmetische Mittel ihrer Nachbarglieder.

  • Da a n+1 = a n q a n+1 a n =q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXICTaamyCaiabgsDiBpaalaaabaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiabg2da9iaadghaaaa@4A0D@ , ist bei geometrischen Folgen in 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacqGHGjsUcaaIWaaaaaaa@3A07@ der Quotient zweier aufeinander folgender Glieder konstant:

    ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist geometrisch a n+1 a n =q   für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aaSaaaeaacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaeyypa0JaamyCaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiabgIGiolablwriLcaa@4B99@ .

    Wir zeigen noch: Die Glieder einer geometrischen Folge sind dem Betrag nach das geometrische Mittel ihrer Nachbarglieder.


     

Bemerkung:  

  1. ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist arithmetisch a n+1 = a n + a n+2 2    für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIYaaabeaaaOqaaiaaikdaaaGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaeyicI4SaeSyfHukaaa@4FEE@
     
[5.2.13]
 
  1. ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@   ist geometrisch

    a n a n+2 0| a n+1 |= a n a n+2    für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaOGaeyyzImRaaGimaiabgEIizlaacYhacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacYhacqGH9aqpdaGcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIYaaabeaaaeqaaOGaaeOzaiaabYpacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabwgacaWGUbGaeyicI4SaeSyfHukaaa@5ECE@

[5.2.14]

Beweis:  
1.  

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Wir setzen die Rekursionsvorschrift  a n+1 = a n +d MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamizaaaa@3E75@   zweimal ein:

a n + a n+2 2 = a n + a n+1 +d 2 = a n +d+ a n+1 2 = a n+1 + a n+1 2 = a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGOmaaqabaaakeaacaaIYaaaaiabg2da9maalaaabaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaamizaaqaaiaaikdaaaGaeyypa0ZaaSaaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamizaiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaGcbaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaakeaacaaIYaaaaiabg2da9iaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaaa@607B@ .

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Wir zeigen jetzt per Induktion

a n+1 = a n + a 1 a 0    für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGimaaqabaGccaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPaaa@4DB3@

und haben so ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@ als eine arithmetische Folge mit c= a 0  und d= a 1 a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccaqG1bGaaeOBaiaabsgacaWGKbGaeyypa0JaamyyamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGimaaqabaaaaa@42FC@ dargestellt.

  • 0A: a 1 = a 0 + a 1 a 0 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIWaaabeaaaaa@43D0@

  • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@ Zunächst ergibt sich aus der Bedingung in [5.2.13]: 2 a n+1 = a n + a n+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaaaa@41EB@ , so dass wir die folgende Gleichung aufstellen können:

    a n+2 =2 a n+1 a n =2 a n +2( a 1 a 0 ) a n =( a n + a 1 a 0 )+ a 1 a 0 = a n+1 + a 1 a 0 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGOmaaqabaaakeaacqGH9aqpcaaIYaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gaaeqaaaGcbaaabaGaeyypa0JaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaaIYaGaaiikaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiabgkHiTiaadggadaWgaaWcbaGaamOBaaqabaaakeaaaeaacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcbaaabaGaeyypa0JaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIWaaabeaaaaaaaa@69FD@
2.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ ":  Wir gehen analog zu 1. vor und wenden auch hier die Rekursionsvorschrift zweimal an:

a n a n+2 = a n a n+1 q= a n q a n+1 = a n+1 a n+1 = a n+1 .2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyyXICTaamyCaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1caWGXbGaeyyXICTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamyyamaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaaaaa@6692@ .

Damit ergibt sich zunächst: a n a n+2 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaOGaeyyzImRaaGimaaaa@406F@ . Die restliche Behauptung erhält man anschließend durch Wurzelziehen.

" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ ":  Beim Nachweis dieser Richtung sind zwei Fälle zu unterscheiden:

  • a 1 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaicdaaaa@3980@ , dann ergibt sich aus | a n+1 |= a n a n+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiiFaiabg2da9maakaaabaGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadggadaWgaaWcbaGaamOBaiabgUcaRiaaikdaaeqaaaqabaaaaa@44A7@ mittels Induktion a n =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9iaaicdaaaa@39B8@ für alle n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaigdaaaa@395D@ ( a n ) n0 = ( a 0 ,0,0,0,) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaakiabg2da9iaacIcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaaicdacaGGSaGaaGimaiaacYcacaaIWaGaaiilaiablAciljaacMcadaWgaaWcbaGaamOBaiabgwMiZkaaicdaaeqaaaaa@4ADE@   ist also eine geometrische Folge mit q=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9iaaicdaaaa@389F@ .

  • a 1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabgcMi5kaaicdaaaa@3A41@ . Jetzt erhält man per Induktion: a n 0  für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgcMi5kaaicdacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPaaa@4606@ . Analog zu 1. können wir damit zeigen

    a n+1 = a n a 1 a 0    für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXIC9aaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaaaaGccaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPaaa@4E3E@ ,

    so dass ( a n ) n0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGHLjYScaaIWaaabeaaaaa@3CF0@ eine geometrische Folge mit  c= a 0 q= a 1 a 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHNis2caWGXbGaeyypa0ZaaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaaaaaaaa@410A@   ist.

    • 0A: a 1 = a 0 a 1 a 0 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHflY1daWcaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@445B@

    • nAn+1A: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aaaaa@411B@ Aus [5.2.14] erhalten wir: a n+1 .2 = a n a n+2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGccqGH9aqpcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXICTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGOmaaqabaaaaa@4354@ , und damit:

      a n+2 = a n+1 .2 a n = a n+1 a n a n+1 = a n+1 a n a n a 1 a 0 = a n+1 a 1 a 0 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGOmaaqabaaakeaacqGH9aqpdaWcaaqaaiaadggadaqhaaWcbaGaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaaakeaaaeaacqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaaaaGccqGHflY1caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaaqaaiabg2da9maalaaabaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiabgwSixlaadggadaWgaaWcbaGaamOBaaqabaGccqGHflY1daWcaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaaaqaaiabg2da9iaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyyXIC9aaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaaaaaaaaaa@69E0@

In der vorletzten Bemerkung ist ein interessantes, aber oft schwieriges Problem angesprochen: Im Prinzip läßt sich  jede rekursiv gegebene Folge auch auch nicht-rekursiv darstellen. Gibt es ein allgemeines Verfahren, diese Umschreibung auch tatsächlich durchzuführen? In dieser Allgemeinheit wird man kaum eine positive Anwort finden; in speziellen Situationen, wie etwa bei den geometrischen oder arihtmetischen Folgen, kann man aber durchaus Erfolg haben. Meist jedoch wird man jede Folge individuell untersuchen müssen, um eine Idee für eine geeignete Folgenvorschrift zu finden. In jedem Fall allerdings ist das Induktionsprinzip das Beweismittel, um die Gültigkeit der rekursionsfreien Darstellung beweisen zu können.

Beispiel:   ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ sei rekursiv gegeben durch

a 1 1 2 a n+1 a n +1 2 , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaey4jIKTaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@4525@

also ( a n )=( 1 2 , 3 4 , 7 8 , 15 16 ,) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikamaalaaabaGaaGymaaqaaiaaikdaaaGaaiilamaalaaabaGaaG4maaqaaiaaisdaaaGaaiilamaalaaabaGaaG4naaqaaiaaiIdaaaGaaiilamaalaaabaGaaGymaiaaiwdaaeaacaaIXaGaaGOnaaaacaGGSaGaeSOjGSKaaiykaaaa@473C@ . Man erkennt deutlich dass im Nenner die 2-er Potenzen stehen und dass der Zähler stets um 1 niedriger ausfällt als der Nenner. Man vermutet daher:

( a n )=( 2 n 1 2 n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaaiikamaalaaabaGaaGOmamaaCaaaleqabaGaamOBaaaakiabgkHiTiaaigdaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaaaakiaacMcaaaa@4134@

Beweis per Induktion:  

  • 1A: a 1 = 1 2 = 2 1 1 2 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeyypa0ZaaSaaaeaacaaIYaWaaWbaaSqabeaacaaIXaaaaOGaeyOeI0IaaGymaaqaaiaaikdadaahaaWcbeqaaiaaigdaaaaaaaaa@4420@

  • nAn+1A: a n+1 = a n +1 2 = 2 n 1 2 n +1 2 = 2 n 1+ 2 n 2 2 n = 2 n+1 1 2 n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolaadgeacqGHshI3caWGUbGaey4kaSIaaGymaiabgIGiolaadgeacaGG6aGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaaIXaaabaGaaGOmaaaacqGH9aqpdaWcaaqaamaalaaabaGaaGOmamaaCaaaleqabaGaamOBaaaakiabgkHiTiaaigdaaeaacaaIYaWaaWbaaSqabeaacaWGUbaaaaaakiabgUcaRiaaigdaaeaacaaIYaaaaiabg2da9maalaaabaGaaGOmamaaCaaaleqabaGaamOBaaaakiabgkHiTiaaigdacqGHRaWkcaaIYaWaaWbaaSqabeaacaWGUbaaaaGcbaGaaGOmaiabgwSixlaaikdadaahaaWcbeqaaiaad6gaaaaaaOGaeyypa0ZaaSaaaeaacaaIYaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaaigdaaeaacaaIYaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaaaaa@694A@


 

Das Rekursionsprinzip läßt sich vielfältig erweitern. So kann man etwa zweistufige Rekursionen einführen: Man gibt dabei die ersten zwei Folgenglieder a 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaaaaa@37B6@ und a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaa@37B7@ vor und kann dann bei der Ermittlung der weiteren Glieder auf zwei Vorgänger zurück greifen.

Beispiel:  Die durch

a 1 1, a 2 1 a n+2 a n+1 + a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacaGGSaGaamyyamaaBaaaleaacaaIYaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIYaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbaabeaaaaa@4ABE@
[5.2.15]

rekursiv gegebene Folge heißt Fibonacci-Folge. Ihre Folgenglieder entstehen jeweils durch Addition der beiden Vorgänger. Die ersten Fibonacci-Zahlen berechnet man also zu:

1,1,2,3,5,8,13,21,34,55, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI1aGaaiilaiaaiIdacaGGSaGaaGymaiaaiodacaGGSaGaaGOmaiaaigdacaGGSaGaaG4maiaaisdacaGGSaGaaGynaiaaiwdacaGGSaGaeSOjGSeaaa@4843@ .

Eine weitere Möglichkeit besteht darin, rekursive Folgen in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ zu betrachten.

Beispiel:  Ist die Folge (( a n , b n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiykaaaa@3D6A@ rekursiv gegeben durch

( a 1 , b 1 )(2,1)( a n+1 , b n+1 )( a n + b n , a n b n ), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOyamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9aqpcaGGOaGaaGOmaiaacYcacaaIXaGaaiykaiabgEIizlaacIcacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcacqGH9aqpcaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGSaGaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@59B0@

so ergibt sich die folgende Wertetabelle: (( a n , b n ))=((2,1),(3,2),(5,6),(11,30),(41,330),) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiykaiabg2da9iaacIcacaGGOaGaaGOmaiaacYcacaaIXaGaaiykaiaacYcacaGGOaGaaG4maiaacYcacaaIYaGaaiykaiaacYcacaGGOaGaaGynaiaacYcacaaI2aGaaiykaiaacYcacaGGOaGaaGymaiaaigdacaGGSaGaaG4maiaaicdacaGGPaGaaiilaiaacIcacaaI0aGaaGymaiaacYcacaaIZaGaaG4maiaaicdacaGGPaGaaiilaiablAciljaacMcaaaa@5991@ .

Die Schreibweise zeigt, dass man eine rekursive Folge in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ auch auffassen kann als ein gekoppeltes System zweier rekursiver Folgen in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ . Man hätte also auch schreiben können: ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ und ( b n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3952@ seien rekursiv gegeben durch

a 1 2, b 1 1 a n+1 a n + b n , b n+1 a n b n . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacaGGSaGaamOyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWGUbaabeaakiabgwSixlaadkgadaWgaaWcbaGaamOBaaqabaaaaa@54EE@

In den letzten Jahren hat die sog. Chaos-Theorie einen - für ein mathematisches Thema - außergewöhnlich hohen Bekanntheitsgrad erreicht. Ein letztes Beispiel in diesem Abschnitt stellt eine rekursive Folge in 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ vor, die mit der Popularität dieser Theorie eng verbunden ist:

Beispiel:  Für ein (festes) Zahlenpaar ( c 1 , c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacMcacqGHiiIZcqWIDesOaaa@3E99@ sei die Folge (( a n , b n )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiykaaaa@3D6A@ rekursiv gegeben durch

( a 1 , b 1 )( c 1 , c 2 )( a n+1 , b n+1 )( a n 2 b n 2 + c 1 ,2 a n b n + c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOyamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9aqpcaGGOaGaam4yamaaBaaaleaacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEIizlaacIcacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacYcacaWGIbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcacqGH9aqpcaGGOaGaamyyamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgkHiTiaadkgadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamOyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@615A@
[5.2.16]

Für verschiedene Werte von ( c 1 , c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BA5@ ergeben sich nun unterschiedliche Wertetabellen. In der folgenden Tafel sind neben ersten Folgengliedern auch deren Abstände |( a n , b n )|= a n 2 + b n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaiabg2da9maakaaabaGaamyyamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRiaadkgadaqhaaWcbaGaamOBaaqaaiaaikdaaaaabeaaaaa@4598@ zum Koordinatenursprung notiert.

( c 1 , c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BA5@ ( a n , b n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGSaGaamOyamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@3C11@ |( a n , b n )| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiilaiaadkgadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiiFaaaa@3E11@
(0,0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGimaiaacMcaaaa@3966@ (0,0),(0,0),(0,0),(0,0),(0,0), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGimaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaaGimaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaaGimaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaaGimaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaaGimaiaacMcacaGGSaGaeSOjGSeaaa@4BEC@ 0,0,0,0,0, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaacYcacaaIWaGaaiilaiaaicdacaGGSaGaaGimaiaacYcacaaIWaGaaiilaiablAcilbaa@3E1D@
(0,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGymaiaacMcaaaa@3967@ (0,1),(1,1),(0,1),(1,1),(0,1),(1,1), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaicdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiabgkHiTiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaeyOeI0IaaGymaiaacMcacaGGSaGaaiikaiabgkHiTiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiaaicdacaGGSaGaeyOeI0IaaGymaiaacMcacaGGSaGaaiikaiabgkHiTiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaeSOjGSeaaa@54C3@ 1,1.414,1,1.414,1, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaacYcacaaIXaGaaiOlaiaaisdacaaIXaGaaGinaiaacYcacaaIXaGaaiilaiaaigdacaGGUaGaaGinaiaaigdacaaI0aGaaiilaiaaigdacaGGSaGaeSOjGSeaaa@43F4@
(1,1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGymaiaacMcaaaa@3968@ (1,1),(1,3),(9,7),(32,127), MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacaGGSaGaaGymaiaacMcacaGGSaGaaiikaiaaigdacaGGSaGaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaiMdacaGGSaGaaG4naiaacMcacaGGSaGaaiikaiaaiodacaaIYaGaaiilaiaaigdacaaIYaGaaG4naiaacMcacaGGSaGaeSOjGSeaaa@4AFF@ 1.414,3.162,11.4,130.97, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac6cacaaI0aGaaGymaiaaisdacaGGSaGaaG4maiaac6cacaaIXaGaaGOnaiaaikdacaGGSaGaaGymaiaaigdacaGGUaGaaGinaiaacYcacaaIXaGaaG4maiaaicdacaGGUaGaaGyoaiaaiEdacaGGSaGaeSOjGSeaaa@4863@

Während nun bei einigen Werten von ( c 1 , c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BA5@ die Nullabstände immer größer werden, wie etwa im letzten Beispiel, liefern andere Startwerte solche Abstände, die eine gewisse Schranke nicht überschreiten. Markiert man nun in der Zeichenebene etwa all diejenigen Punkte ( c 1 , c 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3BA5@ bei denen die Nullabstände der resultierenden Folgen den Wert 2 nicht übertreffen, ergibt sich eine äußerst interessante Teilmenge des 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaaIYaaaaaaa@3842@ , die sog. Mandelbrotmenge. Bereitet man auch die Randbereiche dieser Menge graphisch auf, entsteht eine optische sehr faszinierende Darstellung:

Mathematisch interessant wird die Mandelbrotmenge erst, wenn man Ausschnitte von ihr vergrößert und wieder vergrößert und noch mal vergößert usw. Es lohnt sich, eine Reise durch die Mandelbrotmenge zu unternehmen.

Die Mandelbrotmenge ist das bekannteste Beispiel eines sog. Fractals. Es gibt viele weitere Beispiele von Fractalen im web. Diese Seite enthält eine sehr(!) umfangreiche link-Liste zu phantastischen fractal sites.

Wer selbst Fractale erstellen will, kann sich hier informieren und die nötigen tools bekommen.


5.1. 5.3.