9.10. Lineare Abbildungen


Wir wenden uns nun den strukturverträglichen Abbildungen zu, Abbildungen also zwischen zwei Vektorräumen, die die Vektoraddition und die skalare Multiplikation respektieren. 

Definition:  V und W seien zwei Vektorräume. Wir nennen eine Abbildung

f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@

linear (oder auch einen Homomorphismus), falls für alle v 1 , v 2 V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4SaamOvaaaa@3CD1@ und α 1 , α 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaaIYaaabeaakiabgIGiolabl2riHcaa@3EAE@ gilt:

f( α 1 v 1 + α 2 v 2 )= α 1 f( v 1 )+ α 2 f( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@5173@ .
 

Die Menge aller linearen Abbildungen von V nach W bezeichnen wir mit dem Symbol Hom(V,W).
 

Beachte:

 

Wir beginnen die Untersuchung der linearen Abbildungen mit einem einfachen, aber nützlichen Kriterium:
 
Bemerkung:  Ist f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ linear, so gilt:  f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AA7@ .

Die Umkehrung ist i.a. falsch!

Beweis:

f(0)=f(00)=0f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaadAgacaGGOaGaaGimaiabgwSixlaaicdacaGGPaGaeyypa0JaaGimaiabgwSixlaadAgacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@48B7@ .

Die Quadratfunktion X 2 : MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3D44@ ist nicht linear, denn z.B. ist X 2 (1+2)=9 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIaaGOmaiaacMcacqGH9aqpcaaI5aaaaa@3D34@ und X 2 (1)+ X 2 (2)=5 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaaiykaiabgUcaRiaadIfadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGOmaiaacMcacqGH9aqpcaaI1aaaaa@4059@ , aber: X 2 (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3B8C@ .
 

 

Beispiel:
  • f: 3 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaaiodaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaaiodaaaaaaa@3E3D@ gegeben durch f(x)=( x 1 + x 2 x 3 x 1 x 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maabmaabaqbaeqabmqaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaaaa@4742@ ist linear, denn: f(αx+βy)=( α x 1 +β y 1 +α x 2 +β y 2 α x 3 +β y 3 α x 1 +β y 1 α x 3 β y 3 )=α( x 1 + x 2 x 3 x 1 x 3 )+β( y 1 + y 2 y 3 y 1 y 3 )=αf(x)+βf(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacqaHXoqycaWG4bGaey4kaSIaeqOSdiMaamyEaiaacMcacqGH9aqpdaqadaqaauaabeqadeaaaeaacqaHXoqycaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOSdiMaamyEamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHjaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHYoGycaWG5bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeqySdeMaamiEamaaBaaaleaacaaIZaaabeaakiabgUcaRiabek7aIjaadMhadaWgaaWcbaGaaG4maaqabaaakeaacqaHXoqycaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOSdiMaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiabeg7aHjaadIhadaWgaaWcbaGaaG4maaqabaGccqGHsislcqaHYoGycaWG5bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9iabeg7aHnaabmaabaqbaeqabmqaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiabek7aInaabmaabaqbaeqabmqaaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyEamaaBaaaleaacaaIZaaabeaaaOqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9iabeg7aHjaadAgacaGGOaGaamiEaiaacMcacqGHRaWkcqaHYoGycaWGMbGaaiikaiaadMhacaGGPaaaaa@95C3@ .
     
  • f: 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqWIDesOaaa@3D52@ gegeben durch f(x)= x 1 x 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadIhadaWgaaWcbaGaaGymaaqabaGccqGHflY1caWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@404D@ ist nicht linear, denn z.B. ist 2f(( 1 1 ))=21=2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadAgacaGGOaWaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiykaiabg2da9iaaikdacqGHflY1caaIXaGaeyypa0JaaGOmaaaa@427E@ , aber f(2( 1 1 ))=f(( 2 2 ))=4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIYaWaaeWaaeaafaqabeGabaaabaGaaGymaaqaaiaaigdaaaaacaGLOaGaayzkaaGaaiykaiabg2da9iaadAgacaGGOaWaaeWaaeaafaqabeGabaaabaGaaGOmaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaiykaiabg2da9iaaisdaaaa@4411@ .

Beachte:

 

Interessant ist wieder das Zusammenspiel zwischen Analysis und linearer Algebra. Viele Rechenregeln aus der Analysis lassen sich nun unter einem einheitlichen Gesichtspunkt formulieren.

Beispiel:  Die folgenen Abbildungen aus der Analysis sind linear. Der Nachweis ist durch den Beweis der jeweiligen Rechenregel bereits geführt.
  1. lim:{( a n )|( a n )   ist konvergent} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacMgacaGGTbGaaiOoaiaacUhacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiaacMcacaGG8bGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaGjbVlaabMgacaqGZbGaaeiDaiaabccacaqGRbGaae4Baiaab6gacaqG2bGaaeyzaiaabkhacaqGNbGaaeyzaiaab6gacaqG0bGaaiyFaiabgkziUkabl2riHcaa@550E@ .
  2. lim xa :{f𝔽(A)|f   ist in   a   stetig fortsetzbar} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaWGHbaabeaakiaacQdacaGG7bGaamOzaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWBKaaiikaiaadgeacaGGPaGaaiiFaiaadAgacaaMe8UaaeyAaiaabohacaqG0bGaaeiiaiaabMgacaqGUbGaaGjbVlaadggacaaMe8Uaae4CaiaabshacaqGLbGaaeiDaiaabMgacaqGNbGaaeiiaiaabAgacaqGVbGaaeOCaiaabshacaqGZbGaaeyzaiaabshacaqG6bGaaeOyaiaabggacaqGYbGaaiyFaiabgkziUkabl2riHcaa@70C5@ .
  3. D a :{f𝔽(A)|f   ist in   a   differenzierbar} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGHbaabeaakiaacQdacaGG7bGaamOzaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWBKaaiikaiaadgeacaGGPaGaaiiFaiaadAgacaaMe8UaaeyAaiaabohacaqG0bGaaeiiaiaabMgacaqGUbGaaGjbVlaadggacaaMe8UaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG6bGaaeyAaiaabwgacaqGYbGaaeOyaiaabggacaqGYbGaaiyFaiabgkziUkabl2riHcaa@690A@ gegeben durch D a (f)= f (a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGHbaabeaakiaacIcacaWGMbGaaiykaiabg2da9iqadAgagaqbaiaacIcacaWGHbGaaiykaaaa@3E4E@ .
  4. D n : C k (A) C kn (A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacQdacaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaiikaiaadgeacaGGPaGaeyOKH4Qaam4qamaaCaaaleqabaGaam4AaiabgkHiTiaad6gaaaGccaGGOaGaamyqaiaacMcaaaa@4483@ gegeben durch D n (f)= f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCaaaleqabaGaamOBaaaakiaacIcacaWGMbGaaiykaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaaaaa@3E8A@ , für kn MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgwMiZkaad6gaaaa@3992@ .
  5. a b :I(I) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccaGG6aGaamysaiaacIcacaWGjbGaaiykaiabgkziUkabl2riHcaa@4139@ .

Auf das folgende Beispiel kommen wir im Abschnitt über die verallgemeinerte Differenzierbarkeit noch einmal zurück.

Beispiel:  Es sei aA MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolaadgeaaaa@3919@ . Die Funktion
δ a :𝔽(A) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadggaaeqaaOGaaiOoamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWBKaaiikaiaadgeacaGGPaGaeyOKH4QaeSyhHekaaa@4AC7@ gegeben durch δ a (f)=f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadggaaeqaaOGaaiikaiaadAgacaGGPaGaeyypa0JaamOzaiaacIcacaWGHbGaaiykaaaa@3F1E@

ist eine Linearform. Wir nennen sie die Diracsche Deltaform.

Beweis:  δ a ( α 1 f 1 + α 2 f 2 )= α 1 f 1 + α 2 f 2 (a)= α 1 f 1 (a)+ α 2 f 2 (a)= α 1 δ a ( f 1 )+ α 2 δ a ( f 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaSbaaSqaaiaadggaaeqaaOGaaiikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGMbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGMbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaadggacaGGPaGaeyypa0JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOzamaaBaaaleaacaaIXaaabeaakiaacIcacaWGHbGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamyyaiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccqaH0oazdaWgaaWcbaGaamyyaaqabaGccaGGOaGaamOzamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqaH0oazdaWgaaWcbaGaamyyaaqabaGccaGGOaGaamOzamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@72F6@ .
 

Das nächste Beispiel stellt einige allgemeine lineare Abbildungen vor, die in natürlicher Weise zu jedem Vektorraum gehören.

Bemerkung:   V und W seien Vektorräume, UV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgkOimlaadAfaaaa@399A@ ein Untervektorraum, α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI4SaeSyhHekaaa@3A7C@ . Dann sind die folgenden Abbildungen linear:
  1. 0:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B05@ die Nullabbildung.
     
  2. X V :VV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGwbaabeaakiaacQdacaWGwbGaeyOKH4QaamOvaaaa@3C38@ die Identität auf V.
     
  3. L α :VV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiOoaiaadAfacqGHsgIRcaWGwbaaaa@3CF0@ gegeben durch L α (v)=αv MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiaadAhacaGGPaGaeyypa0JaeqySdeMaeyyXICTaamODaaaa@40CD@ die Streckung mit einem festen Skalar α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3788@ .
     
  4. I U :UV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGvbaabeaakiaacQdacaWGvbGaeyOKH4QaamOvaaaa@3C27@ gegeben durch I U (v)=v MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGvbaabeaakiaacIcacaWG2bGaaiykaiabg2da9iaadAhaaaa@3C1C@ die zu U gehörige Inklusion.
     
  5. P U :V V / U MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGvbaabeaakiaacQdacaWGwbGaeyOKH4QaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaadwfaaeqaaaWcbeaaaaa@3E20@ gegeben durch P U (a)=a+U MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGvbaabeaakiaacIcacaWGHbGaaiykaiabg2da9iaadggacqGHRaWkcaWGvbaaaa@3DB5@ die zu U gehörige Projektion.

Beweis:

Zu 1.:  0( α 1 v 1 + α 2 v 2 )=0= α 1 0+ α 2 0= α 1 0( v 1 )+ α 2 0( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaaIWaGaeyypa0JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGimaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaaicdacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaaIWaGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGimaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@5B1D@ .

Zu 2.:  X V ( α 1 v 1 + α 2 v 2 )= α 1 v 1 + α 2 v 2 = α 1 X V ( v 1 )+ α 2 X V ( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGwbaabeaakiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadIfadaWgaaWcbaGaamOvaaqabaGccaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGybWaaSbaaSqaaiaadAfaaeqaaOGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@5F5E@ .

Zu 3.:  L α ( α 1 v 1 + α 2 v 2 )=α( α 1 v 1 + α 2 v 2 )= α 1 (α v 1 )+ α 2 (α v 2 )= α 1 L α ( v 1 )+ α 2 L α ( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iabeg7aHjaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaGGOaGaeqySdeMaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaeqySdeMaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGmbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGmbWaaSbaaSqaaiabeg7aHbqabaGccaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@7550@ .

Zu 4.:  I U ( α 1 v 1 + α 2 v 2 )= α 1 v 1 + α 2 v 2 = α 1 I U ( v 1 )+ α 2 I U ( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBaaaleaacaWGvbaabeaakiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadMeadaWgaaWcbaGaamyvaaqabaGccaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGjbWaaSbaaSqaaiaadwfaaeqaaOGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@5F2E@ .

Zu 5.:  P U ( α 1 v 1 + α 2 v 2 )=( α 1 v 1 + α 2 v 2 )+U= α 1 ( v 1 +U)+ α 2 ( v 2 +U)= α 1 P U ( v 1 )+ α 2 P U ( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGvbaabeaakiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpcaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaamyvaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyvaiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadwfacaGGPaGaeyypa0JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamiuamaaBaaaleaacaWGvbaabeaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadcfadaWgaaWcbaGaamyvaaqabaGccaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@7364@ .
  

Beachte:


 

Ein Vorteil der linearen Abbildungen gegenüber anderen Funktionen ist ihre Überschaubarkeit: Lineare Abbildungen sind durch ihre Werte auf den Basisvektoren - und bei endlichen Vektorräumen sind dies nur endlich viele (!) - bereits eindeutig bestimmt.

Bemerkung:   V und W seien Vektorräume. Dann gilt:
  1. Ist v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ eine Basis von V, so gibt es zu jeder Sequenz w 1 ,, w n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaaleaacaWGUbaabeaaaaa@3C73@ aus W genau eine lineare Abbildung
     
    f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ ,
    so dass f( v i )= w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaadEhadaWgaaWcbaGaamyAaaqabaaaaa@3D68@ .
     
  2. Ist BV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabgkOimlaadAfaaaa@3987@ eine Basis von V, so läßt sich jede Funktion h:BW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacQdacaWGcbGaeyOKH4Qaam4vaaaa@3B24@ auf genau eine Weise zu einer linearen Abbildung
     
    f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@

    fortsetzen.

Beweis:

Zu 1.:  Zunächst zur Eindeutigkeit: Ist g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B37@ eine weitere Abbildung der genannten Art, so hat man für jedes v= α 1 v 1 ++ α n v n V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyicI4SaamOvaaaa@4697@ :


f(v)=f( α 1 v 1 ++ α n v n )= α 1 f( v 1 )++ α n f( v n )= α 1 g( v 1 )++ α n g( v n )=g( α 1 v 1 ++ α n v n )=g(v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bGaaiykaiabg2da9iaadAgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaakiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiablAciljabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaWGUbaabeaakiaacMcacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaam4zaiaacIcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iaadEgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabeg7aHnaaBaaaleaacaWGUbaabeaakiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0Jaam4zaiaacIcacaWG2bGaaiykaaaa@8059@ .

Zur Konstruktion von  f  setzen wir für v= α 1 v 1 ++ α n v n V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyicI4SaamOvaaaa@4697@
 

f(v)= α 1 w 1 ++ α n w n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadEhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG3bWaaSbaaSqaaiaad6gaaeqaaaaa@4674@ .

Die so definierte Abbildung erfüllt offenbar die Forderung f( v i )= w i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9iaadEhadaWgaaWcbaGaamyAaaqabaaaaa@3D68@ , und sie ist linear: Hat man etwa
 
x= α 1 v 1 ++ α n v n y= β 1 v 1 ++ β n v n , MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadIhacqGH9aqpcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamODamaaBaaaleaacaWGUbaabeaaaOqaaiaadMhacqGH9aqpcqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqOSdi2aaSbaaSqaaiaad6gaaeqaaOGaamODamaaBaaaleaacaWGUbaabeaakiaaykW7caqGSaaaaaaa@54D6@

so ist:
f(αx+βy) =f(α( α 1 v 1 ++ α n v n )+β( β 1 v 1 ++ β n v n )) =f((α α 1 +β β 1 ) v 1 ++(α α n +β β n ) v n ) =(α α 1 +β β 1 ) w 1 ++(α α n +β β n ) w n =α( α 1 w 1 ++ α n w n )+β( β 1 w 1 ++ β n w n ) =αf(x)+βf(y). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamOzaiaacIcacqaHXoqycaWG4bGaey4kaSIaeqOSdiMaamyEaiaacMcaaeaacqGH9aqpcaWGMbGaaiikaiabeg7aHjaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamODamaaBaaaleaacaWGUbaabeaakiaacMcacqGHRaWkcqaHYoGycaGGOaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabek7aInaaBaaaleaacaWGUbaabeaakiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiykaaqaaaqaaiabg2da9iaadAgacaGGOaGaaiikaiabeg7aHjabeg7aHnaaBaaaleaacaaIXaaabeaakiabgUcaRiabek7aIjabek7aInaaBaaaleaacaaIXaaabeaakiaacMcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaaiikaiabeg7aHjabeg7aHnaaBaaaleaacaWGUbaabeaakiabgUcaRiabek7aIjabek7aInaaBaaaleaacaWGUbaabeaakiaacMcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaaaqaaiabg2da9iaacIcacqaHXoqycqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHYoGycqaHYoGydaWgaaWcbaGaaGymaaqabaGccaGGPaGaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaacIcacqaHXoqycqaHXoqydaWgaaWcbaGaamOBaaqabaGccqGHRaWkcqaHYoGycqaHYoGydaWgaaWcbaGaamOBaaqabaGccaGGPaGaam4DamaaBaaaleaacaWGUbaabeaaaOqaaaqaaiabg2da9iabeg7aHjaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaam4DamaaBaaaleaacaWGUbaabeaakiaacMcacqGHRaWkcqaHYoGycaGGOaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaam4DamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiabek7aInaaBaaaleaacaWGUbaabeaakiaadEhadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaaabaGaeyypa0JaeqySdeMaamOzaiaacIcacaWG4bGaaiykaiabgUcaRiabek7aIjaadAgacaGGOaGaamyEaiaacMcaaaaaaa@CADB@

Zu 2.:  Der Beweis ist i.w. eine Kopie des gerade geführten. Man beachte dabei, dass es zu jedem vV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgIGiolaadAfaaaa@3943@ genau eine Darstellung v= α 1 v 1 ++ α n v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaaaa@442E@ mit geeigneten Basisvektoren v 1 ,, v n B MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaakiabgIGiolaadkeaaaa@3EC6@ gibt. Dies sichert wie gerade die Eindeutigkeit, und durch die Festsetzung

f(v)= α 1 h( v 1 )++ α n h( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadIgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWGObGaaiikaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@4B08@

ist auch hier die gesuchte lineare Abbildung  f  konstruiert.
 

Mit linearen Abbildungen sind stets zwei charakteristische Mengen - und wie wir sehen werden sogar Untervektorräume - verbunden.

Definition:  Es sei V und W seien zwei Vektorräume, f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ linear. Dann heißt die Menge
  • Kerf={vV|f(v)=0}V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGH9aqpcaGG7bGaamODaiabgIGiolaadAfacaGG8bGaamOzaiaacIcacaWG2bGaaiykaiabg2da9iaaicdacaGG9bGaeyOGIWSaamOvaaaa@4A4C@ der Kern von  f.
     
  • Imf=f(V)={f(v)|vV}W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciysaiaac2gacaaMi8UaamOzaiabg2da9iaadAgacaGGOaGaamOvaiaacMcacqGH9aqpcaGG7bGaamOzaiaacIcacaWG2bGaaiykaiaacYhacaWG2bGaeyicI4SaamOvaiaac2hacqGHckcZcaWGxbaaaa@4BC1@ das Bild von  f.

Über den Kern und das Bild von  f  lassen sich oft Eigenschaften von  f  beschreiben, so hat man z.B.:

Bemerkung:   f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei linear. Dann gilt:
  1. ist surjektiv Imf=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7ciGGjbGaaiyBaiaayIW7caWGMbGaeyypa0Jaam4vaaaa@417F@ .
  2. ist injektiv Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGlbGaamyzaiaadkhacaaMi8UaamOzaiabg2da9iaacUhacaaIWaGaaiyFaaaa@444E@ .

Beweis:

Zu 1.:  f ist genau dann surjektiv, wenn jedes Element von W ein Urbild besitzt, wenn also W ausschließlich aus  f-Bildern besteht.

Zu 2.:
"" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiOiaiabgkDiElaackcaaaa@3992@ :  Es reicht zu zeigen: Kerf{0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGHckcZcaGG7bGaaGimaiaac2haaaa@3FCC@ . Sei dazu xKerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadUeacaWGLbGaamOCaiaayIW7caWGMbaaaa@3D97@ , also: f(x)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaaicdaaaa@3AEA@ . Da auch f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AA7@ , hat man insbesondere: f(x)=f(0)x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaaGimaiaacMcacaaMf8UaeyO0H4TaaGzbVlaadIhacqGH9aqpcaaIWaaaaa@4564@ .

"" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiOiaiabgcDiClaackcaaaa@398E@ :  Sei f(x)=f(y) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyEaiaacMcaaaa@3D72@ . Folgt: 0=f(x)f(y)=f(xy)xyKerfxy=0x=y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iaadAgacaGGOaGaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadMhacaGGPaGaeyypa0JaamOzaiaacIcacaWG4bGaeyOeI0IaamyEaiaacMcacaaMf8UaeyO0H4TaaGzbVlaadIhacqGHsislcaWG5bGaeyicI4Saam4saiaadwgacaWGYbGaaGjcVlaadAgacaaMf8UaeyO0H4TaaGzbVlaadIhacqGHsislcaWG5bGaeyypa0JaaGimaiaaywW7cqGHshI3caaMf8UaamiEaiabg2da9iaadMhaaaa@66F8@ .
 

 
Bemerkung:    f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei linear, AV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgkOimlaadAfaaaa@3986@ und v i V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaWGPbaabeaakiabgIGiolaadAfaaaa@3A67@ . Dann gilt:
  1. f(<A>)=<f(A)> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacqGH8aapcaWGbbGaeyOpa4Jaaiykaiabg2da9iabgYda8iaadAgacaGGOaGaamyqaiaacMcacqGH+aGpaaa@411B@ .
  2. f(< v 1 ,, v n >)=<f( v 1 ),,f( v n )> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacqGH8aapcaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyOpa4Jaaiykaiabg2da9iabgYda8iaadAgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaadAgacaGGOaGaamODamaaBaaaleaacaWGUbaabeaakiaacMcacqGH+aGpaaa@4EF7@ .
  3. Imf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciysaiaac2gacaaMi8UaamOzaaaa@3A25@ ist ein Untervektorraum von W.

Beweis:

Zu 1.:
wf(<A>) es gibt ein   v<A>   mit   w=f(v) es gibt eine endliche Teilmenge   { v 1 ,, v n }V,    α i ,   so dass   w=f( α 1 v 1 ++ α n v n )= α 1 f( v 1 )++ α n f( v n ) w<f(A)>. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaam4DaiabgIGiolaadAgacaGGOaGaeyipaWJaamyqaiabg6da+iaacMcaaeaacqGHuhY2caaMf8oabaGaaeyzaiaabohacaqGGaGaae4zaiaabMgacaqGIbGaaeiDaiaabccacaqGLbGaaeyAaiaab6gacaaMe8UaamODaiabgIGiolabgYda8iaadgeacqGH+aGpcaaMe8UaaeyBaiaabMgacaqG0bGaaGjbVlaadEhacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaaabaGaeyi1HSTaaGzbVdqaaiaabwgacaqGZbGaaeiiaiaabEgacaqGPbGaaeOyaiaabshacaqGGaGaaeyzaiaabMgacaqGUbGaaeyzaiaabccacaqGLbGaaeOBaiaabsgacaqGSbGaaeyAaiaabogacaqGObGaaeyzaiaabccacaqGubGaaeyzaiaabMgacaqGSbGaaeyBaiaabwgacaqGUbGaae4zaiaabwgacaaMe8Uaai4EaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGG9bGaeyOGIWSaamOvaiaacYcacaaMe8UaeqySde2aaSbaaSqaaiaadMgaaeqaaOGaeyicI4SaeSyhHeQaaiilaiaaysW7caqGZbGaae4BaiaabccacaqGKbGaaeyyaiaabohacaqGZbGaaGjbVlaadEhacqGH9aqpcaWGMbGaaiikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWGMbGaaiikaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaaabaGaeyi1HSTaaGzbVdqaaiaadEhacqGHiiIZcqGH8aapcaWGMbGaaiikaiaadgeacaGGPaGaeyOpa4JaaeOlaaaaaaa@C9F8@

2 ist ein Spezialfall von 1.

Zu 3.:  Mit 1. hat man: Imf=f(V)=f(<V>)=<f(V)> MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciysaiaac2gacaaMi8UaamOzaiabg2da9iaadAgacaGGOaGaamOvaiaacMcacqGH9aqpcaWGMbGaaiikaiabgYda8iaadAfacqGH+aGpcaGGPaGaeyypa0JaeyipaWJaamOzaiaacIcacaWGwbGaaiykaiabg6da+aaa@4AAC@ . Imf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciysaiaac2gacaaMi8UaamOzaaaa@3A25@ ist also stets ein Erzeugnis, insbesondere damit ein Untervektorraum.
 

 
Bemerkung:   f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei linear. Dann gilt: Kerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgaaaa@3B16@ ist ein Untervektorraum von V.

Beweis:

Es sind drei Punkte zu überprüfen:

  • 0Kerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaadUeacaWGLbGaamOCaiaayIW7caWGMbaaaa@3D54@ , denn: f(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3AA7@ .
  • x,yKerff(x+y)=f(x)+f(y)=0+0=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcacaWG5bGaeyicI4Saam4saiaadwgacaWGYbGaaGjcVlaadAgacaaMf8UaeyO0H4TaaGzbVlaadAgacaGGOaGaamiEaiabgUcaRiaadMhacaGGPaGaeyypa0JaamOzaiaacIcacaWG4bGaaiykaiabgUcaRiaadAgacaGGOaGaamyEaiaacMcacqGH9aqpcaaIWaGaey4kaSIaaGimaiabg2da9iaaicdaaaa@5766@ , d.h.: x+yKerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgUcaRiaadMhacqGHiiIZcaWGlbGaamyzaiaadkhacaaMi8UaamOzaaaa@3F77@ .
  • xKerff(αx)=αf(x)=α0=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadUeacaWGLbGaamOCaiaayIW7caWGMbGaaGzbVlabgkDiElaadAgacaGGOaGaeqySdeMaamiEaiaacMcacqGH9aqpcqaHXoqycaWGMbGaaiikaiaadIhacaGGPaGaeyypa0JaeqySdeMaeyyXICTaaGimaiabg2da9iaaicdaaaa@53B1@ , also: αxKerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamiEaiabgIGiolaadUeacaWGLbGaamOCaiaayIW7caWGMbaaaa@3F36@ .

 

Lineare Abbildungen deren Kern der Nullraum ist, sind vom großer Bedeutung, denn sie besitzen automatisch weitere interessante Eigenschaften, wie etwa die oben bereits nachgewiesene Injektivität. Im Folgenden nun zeigen wir, dass sie die lineare Unabhängigkeit vererben.

Bemerkung:   f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei linear mit Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGH9aqpcaGG7bGaaGimaiaac2haaaa@3ED6@ . Dann gilt:
 
v 1 ,, v n    linear unabhängigf( v 1 ),,f( v n )   linear unabhängig. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaakiaaysW7caqGSbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGaGaaeyDaiaab6gacaqGHbGaaeOyaiaabIgacaqGKdGaaeOBaiaabEgacaqGPbGaae4zaiaaywW7cqGHshI3caaMf8UaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaaysW7caqGSbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGaGaaeyDaiaab6gacaqGHbGaaeOyaiaabIgacaqGKdGaaeOBaiaabEgacaqGPbGaae4zaiaab6caaaa@70A3@

Beweis:

Sei 0= α 1 f( v 1 )++ α n f( v n )=f( α 1 v 1 ++ α n v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWGMbGaaiikaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaGaeyypa0JaamOzaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamODamaaBaaaleaacaWGUbaabeaakiaacMcaaaa@5817@ , d.h.

α 1 v 1 ++ α n v n Kerf α 1 v 1 ++ α n v=0 α 1 == α n =0,   da    v 1 ,, v n    linear unabhängig. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaeyicI4Saam4saiaadwgacaWGYbGaaGjcVlaadAgaaeaacqGHshI3aeaacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaamODaiabg2da9iaaicdaaeaacqGHshI3aeaacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqWIMaYscqGH9aqpcqaHXoqydaWgaaWcbaGaamOBaaqabaGccqGH9aqpcaaIWaGaaiilaiaaysW7caqGKbGaaeyyaiaaysW7caWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaGjbVlaabYgacaqGPbGaaeOBaiaabwgacaqGHbGaaeOCaiaabccacaqG1bGaaeOBaiaabggacaqGIbGaaeiAaiaabsoacaqGUbGaae4zaiaabMgacaqGNbGaaeOlaaaaaaa@8329@

 

 


Wir untersuchen nun die Verrechnungmöglichkeiten von linearen Abbildungen untereinander. Zunächst kann man - wie bei allen Funktionen - zwei lineare Abbildungen hinter einander schalten; Die Linearität geht dabei nicht verloren!

Bemerkung:  Sind g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B37@ und f:WU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGxbGaeyOKH4Qaamyvaaaa@3B35@ zwei lineare Abbildungen, so ist auch
 
fg:VU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacaGG6aGaamOvaiabgkziUkaadwfaaaa@3D5A@
linear.

Beweis:

fg( α 1 v 1 + α 2 v 2 ) = f( α 1 g( v 1 )+ α 2 g( v 2 )) = α 1 f(g( v 1 ))+ α 2 f(g( v 2 )) = α 1 fg( v 1 )+ α 2 fg( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaamOzaiablIHiVjaadEgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaeyypa0dabaGaamOzaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaam4zaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacMcaaeaacqGH9aqpaeaacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGMbGaaiikaiaadEgacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamOzaiaacIcacaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiykaaqaaiabg2da9aqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgacqWIyiYBcaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamOzaiablIHiVjaadEgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaaaaaa@7D9E@


Die Grundrechenarten, also die Rechenarten in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ , ließen sich auf die reellwertigen Funktionen übertragen. Analog dazu führen wir nun für W-wertige Funktionen das Rechnen mit den Rechenarten von W ein, d.h. wir übertragen die Vektoraddition und die skalare Multiplikation. Dabei beschränken wir uns auf lineare Funktionen mit festem Definitionsbereich.

Definition:   V und W seien zwei Vektorräume und f,g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaaiOoaiaadAfacqGHsgIRcaWGxbaaaa@3CD2@ zwei lineare Abbildungen. Dann heißt
  • f+g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacaGG6aGaamOvaiabgkziUkaadEfaaaa@3D04@ gegeben durch f+g(v)=f(v)+g(v) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgacaGGOaGaamODaiaacMcacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaGaey4kaSIaam4zaiaacIcacaWG2bGaaiykaaaa@435D@ die Summe von  f und g.
     
  • αf:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3CD5@ gegeben durch αf(v)=α(f(v)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamOzaiaacIcacaWG2bGaaiykaiabg2da9iabeg7aHjaacIcacaWGMbGaaiikaiaadAhacaGGPaGaaiykaaaa@4204@ das α-fache von f.

Erwartungsgemäß sind die so eingeführten Rechenarten mit der Linearität verträglich.

Bemerkung:  Sind f,g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaaiOoaiaadAfacqGHsgIRcaWGxbaaaa@3CD2@ linear, so auch
  1. f+g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgUcaRiaadEgaaaa@38A2@ .
  2. αf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaamOzaaaa@3873@

Beweis:  

Zu 1.:

f+g( α 1 v 1 + α 2 v 2 ) =   f( α 1 v 1 + α 2 v 2 )+g( α 1 v 1 + α 2 v 2 ) =    α 1 f( v 1 )+ α 2 f( v 2 )+ α 1 g( v 1 )+ α 2 g( v 2 ) =    α 1 f( v 1 )+ α 1 g( v 1 )+ α 2 f( v 2 )+ α 2 g( v 2 ) =    α 1 (f( v 1 )+g( v 1 ))+ α 2 (f( v 2 )+g( v 2 )) =    α 1 (f+g)( v 1 )+ α 2 (f+g)( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamOzaiabgUcaRiaadEgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaeyypa0JaaGjbVlaadAgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaam4zaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaeaaaeaacqGH9aqpcaaMe8UaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaam4zaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaqaaaqaaiabg2da9iaaysW7cqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaam4zaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGNbGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaaabaGaeyypa0JaaGjbVlabeg7aHnaaBaaaleaacaaIXaaabeaakiaacIcacaWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaam4zaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaadEgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacaGGPaaabaaabaGaeyypa0JaaGjbVlabeg7aHnaaBaaaleaacaaIXaaabeaakiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamOzaiabgUcaRiaadEgacaGGPaGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaaaa@D538@

Zu 2.:

αf( α 1 v 1 + α 2 v 2 ) =   α(f( α 1 v 1 + α 2 v 2 )) =   α( α 1 f( v 1 )+ α 2 f( v 2 )) =   ( α 1 α)f( v 1 )+( α 2 α)f( v 2 ) =    α 1 (αf)( v 1 )+ α 2 (αf)( v 2 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaeqySdeMaamOzaiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaeaacqGH9aqpcaaMe8UaeqySdeMaaiikaiaadAgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiykaaqaaaqaaiabg2da9iaaysW7cqaHXoqycaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAgacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacaGGPaaabaaabaGaeyypa0JaaGjbVlaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqaHXoqycaGGPaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaacIcacqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqaHXoqycaGGPaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaqaaaqaaiabg2da9iaaysW7cqaHXoqydaWgaaWcbaGaaGymaaqabaGccaGGOaGaeqySdeMaamOzaiaacMcacaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaeqySdeMaamOzaiaacMcacaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcaaaaaaa@9725@

 

Damit haben wir nun die Möglichkeit, lineare Abbildungen von V nach W, also die Elemente von Hom(V,W)  "wie Vektoren" zu verrechnen! Das dies nicht nur eine oberflächliche Ähnlichkeit ist, zeigt der nächste Satz:

Bemerkung:  Sind V und W zwei Vektorräume, so ist ( Hom(V,W) , + , · ) ebenfalls ein Vektorraum.

Beweis:

Zunächst sind nach der Vorüberlegung + und · Rechenoperationen auf Hom(V,W):

+:Hom(V,W)×Hom(V,W)Hom(V,W) :×Hom(V,W)Hom(V,W) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiabgUcaRiaacQdacaqGibGaae4Baiaab2gacaGGOaGaamOvaiaacYcacaWGxbGaaiykaiabgEna0kaabIeacaqGVbGaaeyBaiaacIcacaWGwbGaaiilaiaadEfacaGGPaGaeyOKH4Qaaeisaiaab+gacaqGTbGaaiikaiaadAfacaGGSaGaam4vaiaacMcaaeaacqGHflY1caGG6aGaeSyhHeQaey41aqRaaeisaiaab+gacaqGTbGaaiikaiaadAfacaGGSaGaam4vaiaacMcacqGHsgIRcaqGibGaae4Baiaab2gacaGGOaGaamOvaiaacYcacaWGxbGaaiykaaaaaaa@6436@

Nun sind die acht Vektorraumaxiome zu bestätigen: Da alle hier auftretenden Vektoren Abbildungen von V nach W sind, läßt sich jede Regel bereits über die Gleichheit der Funktionsvorschriften beweisen. Wir verwenden dazu die entsprechenden Regeln in W. Zur optischen Orientierung sind zusammengesetzte Funktionen durch eckige Klammern markiert.

  1. + ist assoziativ:
    [(f+g)+h](v)=(f(v)+g(v))+h(v)=f(v)+(g(v)+h(v)))=[f+(g+h)](v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacqGHRaWkcaWGObGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaacIcacaWGMbGaaiikaiaadAhacaGGPaGaey4kaSIaam4zaiaacIcacaWG2bGaaiykaiaacMcacqGHRaWkcaWGObGaaiikaiaadAhacaGGPaGaeyypa0JaamOzaiaacIcacaWG2bGaaiykaiabgUcaRiaacIcacaWGNbGaaiikaiaadAhacaGGPaGaey4kaSIaamiAaiaacIcacaWG2bGaaiykaiaacMcacaGGPaGaeyypa0Jaai4waiaadAgacqGHRaWkcaGGOaGaam4zaiabgUcaRiaadIgacaGGPaGaaiyxaiaacIcacaWG2bGaaiykaiaac6caaaa@67FE@
     
  2. + ist kommutativ:
    [f+g](v)=f(v)+g(v)=g(v)+f(v)=[g+f](v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadAgacqGHRaWkcaWGNbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaadAgacaGGOaGaamODaiaacMcacqGHRaWkcaWGNbGaaiikaiaadAhacaGGPaGaeyypa0Jaam4zaiaacIcacaWG2bGaaiykaiabgUcaRiaadAgacaGGOaGaamODaiaacMcacqGH9aqpcaGGBbGaam4zaiabgUcaRiaadAgacaGGDbGaaiikaiaadAhacaGGPaGaaiOlaaaa@5609@
     
  3. 0Hom(V,W) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgIGiolaabIeacaqGVbGaaeyBaiaacIcacaWGwbGaaiilaiaadEfacaGGPaaaaa@3E94@ ist neutrales Element:
    [0+f](v)=0(v)+f(v)=0+f(v)=f(v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaicdacqGHRaWkcaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaaicdacaGGOaGaamODaiaacMcacqGHRaWkcaWGMbGaaiikaiaadAhacaGGPaGaeyypa0JaaGimaiabgUcaRiaadAgacaGGOaGaamODaiaacMcacqGH9aqpcaWGMbGaaiikaiaadAhacaGGPaGaaiOlaaaa@4F91@
     
  4. fHom(V,W)fHom(V,W) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaabIeacaqGVbGaaeyBaiaacIcacaWGwbGaaiilaiaadEfacaGGPaGaaGzbVlabgkDiElaaywW7cqGHsislcaWGMbGaeyicI4Saaeisaiaab+gacaqGTbGaaiikaiaadAfacaGGSaGaam4vaiaacMcaaaa@4E07@ ist invers zu f:
    [f+(f)](v)=f(v)+(f)(v)=f(v)f(v)=0=0(v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadAgacqGHRaWkcaGGOaGaeyOeI0IaamOzaiaacMcacaGGDbGaaiikaiaadAhacaGGPaGaeyypa0JaamOzaiaacIcacaWG2bGaaiykaiabgUcaRiaacIcacqGHsislcaWGMbGaaiykaiaacIcacaWG2bGaaiykaiabg2da9iaadAgacaGGOaGaamODaiaacMcacqGHsislcaWGMbGaaiikaiaadAhacaGGPaGaeyypa0JaaGimaiabg2da9iaaicdacaGGOaGaamODaiaacMcacaGGUaaaaa@589E@
     
  5. α(βf)=(αβ)f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaiikaiabek7aIjaadAgacaGGPaGaeyypa0Jaaiikaiabeg7aHjabek7aIjaacMcacaWGMbaaaa@41F7@ :
    [α(βf)](v)=α[βf](v)=α(βf(v))=(αβ)f(v)=[(αβ)f](v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabeg7aHjaacIcacqaHYoGycaWGMbGaaiykaiaac2facaGGOaGaamODaiaacMcacqGH9aqpcqaHXoqycaGGBbGaeqOSdiMaamOzaiaac2facaGGOaGaamODaiaacMcacqGH9aqpcqaHXoqycaGGOaGaeqOSdiMaamOzaiaacIcacaWG2bGaaiykaiaacMcacqGH9aqpcaGGOaGaeqySdeMaeqOSdiMaaiykaiaadAgacaGGOaGaamODaiaacMcacqGH9aqpcaGGBbGaaiikaiabeg7aHjabek7aIjaacMcacaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiaac6caaaa@65D2@
     
  6. 1f=f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaadAgacqGH9aqpcaWGMbaaaa@3980@ :
    [1f](v)=1f(v)=f(v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaaigdacaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaaigdacaWGMbGaaiikaiaadAhacaGGPaGaeyypa0JaamOzaiaacIcacaWG2bGaaiykaiaac6caaaa@459A@
     
  7. (α+β)f=αf+βf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHjabgUcaRiabek7aIjaacMcacaWGMbGaeyypa0JaeqySdeMaamOzaiabgUcaRiabek7aIjaadAgaaaa@434D@ :
    [(α+β)f](v)=(α+β)f(v)=αf(v)+βf(v)=[αf](v)+[βf](v)=[αf+βf](v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaacIcacqaHXoqycqGHRaWkcqaHYoGycaGGPaGaamOzaiaac2facaGGOaGaamODaiaacMcacqGH9aqpcaGGOaGaeqySdeMaey4kaSIaeqOSdiMaaiykaiaadAgacaGGOaGaamODaiaacMcacqGH9aqpcqaHXoqycaWGMbGaaiikaiaadAhacaGGPaGaey4kaSIaeqOSdiMaamOzaiaacIcacaWG2bGaaiykaiabg2da9iaacUfacqaHXoqycaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiabgUcaRiaacUfacqaHYoGycaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaacUfacqaHXoqycaWGMbGaey4kaSIaeqOSdiMaamOzaiaac2facaGGOaGaamODaiaacMcacaGGUaaaaa@70B3@
     
  8. α(f+g)=αf+αg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaiikaiaadAgacqGHRaWkcaWGNbGaaiykaiabg2da9iabeg7aHjaadAgacqGHRaWkcqaHXoqycaWGNbaaaa@4297@ :
    [α(f+g)](v)=α[f+g](v)=α(f(v)+g(v))=αf(v)+αg(v)=[αf](v)+[αg](v)=[αf+αg](v). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabeg7aHjaacIcacaWGMbGaey4kaSIaam4zaiaacMcacaGGDbGaaiikaiaadAhacaGGPaGaeyypa0JaeqySdeMaai4waiaadAgacqGHRaWkcaWGNbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iabeg7aHjaacIcacaWGMbGaaiikaiaadAhacaGGPaGaey4kaSIaam4zaiaacIcacaWG2bGaaiykaiaacMcacqGH9aqpcqaHXoqycaWGMbGaaiikaiaadAhacaGGPaGaey4kaSIaeqySdeMaam4zaiaacIcacaWG2bGaaiykaiabg2da9iaacUfacqaHXoqycaWGMbGaaiyxaiaacIcacaWG2bGaaiykaiabgUcaRiaacUfacqaHXoqycaWGNbGaaiyxaiaacIcacaWG2bGaaiykaiabg2da9iaacUfacqaHXoqycaWGMbGaey4kaSIaeqySdeMaam4zaiaac2facaGGOaGaamODaiaacMcacaGGUaaaaa@7B0C@

 

In der folgenden Definition zeichnen wir spezielle lineare Abbildungen aus. Sie eignen sich zu strukturellen Untersuchungen von Vektorräumen.

Definition:  V und W seien zwei Vektorräume. Eine umkehrbare, lineare Abbildung
f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@

nennen wir einen Isomorphismus

Gibt es eine solche Abbildung zwischen V und W, so sagen wir, V und W seien isomorph, in Zeichen: VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadEfaaaa@38D3@ .
  

Beachte:

 

Isomorphe Vektorräume stimmen in ihren Kenndaten überein, Isomorphismen erhalten alle relevanten Eigenschaften. In den folgenden drei Aussagen ist dies beispielhaft vorgestellt.

Bemerkung:    f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei Isomorphismus. Dann gilt
  1. v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ Basis von V f( v 1 ),,f( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiilaiablAciljaacYcacaWGMbGaaiikaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@467C@ Basis von W
  2. V endlich MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7aaa@3B62@ W endlich.
  3. dim V = dim W.

Beweis:

Zu 1.:  Wir nutzen einige Ergebnisse aus dem oberen Teil dieses Abschnitts. 

Da f injektiver Homomorphismus ist, hat man: Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGH9aqpcaGG7bGaaGimaiaac2haaaa@3ED6@ , so dass man argumentieren kann:  

v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ linear unabhängig f( v 1 ),,f( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaGaaiilaiablAciljaacYcacaWGMbGaaiikaiaadAhadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@467C@ linear unabhängig.

Ferner ist v 1 ,, v n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaaaaa@3C71@ maximal, d.h. < v 1 ,, v n >=V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaakiabg6da+iabg2da9iaadAfaaaa@4068@ . Folgt mit der Surjektivität von  f :

<f( v 1 ),,f( v n )>=f(< v 1 ,, v n >)=f(V)=W MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabg6da+iabg2da9iaadAgacaGGOaGaeyipaWJaamODamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamODamaaBaaaleaacaWGUbaabeaakiabg6da+iaacMcacqGH9aqpcaWGMbGaaiikaiaadAfacaGGPaGaeyypa0Jaam4vaaaa@54FE@ .

Also ist auch f( v 1 ),,f( v n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamOzaiaacIcacaWG2bWaaSbaaSqaaiaad6gaaeqaaOGaaiykaaaa@4103@ maximal.

2. folgt direkt aus 1., ebenso 3. für endliche Vektorräume. Für nicht-endliche Vektorräume ergibt sich 3. aus der leicht einzusehenden Verallgemeinerung von 1.:
 

B Basis von V f(B) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgkDiElaaywW7caWGMbGaaiikaiaadkeacaGGPaaaaa@3E6D@ Basis von W
 

Die Isomorphie zwischen Vektorräumen ist eine Äquivalenzrelation, d.h. es gelten die folgenden drei Beziehungen:

Bemerkung:  V, W und U seien drei Vektorräume. Dann gilt:
  1. VV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadAfaaaa@38D2@
  2. VWWV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadEfacaaMf8UaeyO0H4TaaGzbVlaadEfacqGHfjcqcaWGwbaaaa@4136@
  3. VW      WUVU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadEfacaaMe8Uaey4jIKTaaGjbVlaadEfacqGHfjcqcaWGvbGaaGzbVlabgkDiElaaywW7caWGwbGaeyyrIaKaamyvaaaa@48E5@

Beweis:

Zu 1.:  i d V MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaadsgadaWgaaWcbaGaamOvaaqabaaaaa@38C7@ ist linear und bijektiv, also ein Isomorphismus.

Zu 2.:  Ist VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadEfaaaa@38D3@ , so gibt es einen Isomorphismus f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ . Da f bijektiv ist, existiert die Umkehrabbildung f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38A9@ ; sie ist ebenfalls bijektiv. Wir zeigen jetzt: f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38A9@ ist linear. Da sich f und f 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@38A9@ in ihrer Wirkung gegenseitig aufheben, hat man auf Grund der Linearität von f die folgende Gleichung:

f 1 ( α 1 v 1 + α 2 v 2 ) = f 1 ( α 1 f( f 1 ( v 1 ))+ α 2 f( f 1 ( v 2 ))) = f 1 (f( α 1 f 1 ( v 1 )+ α 2 f 1 ( v 2 ))) = α 1 f 1 ( v 1 )+ α 2 f 1 ( v 2 ). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaeyypa0JaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGMbGaaiikaiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacaGGPaGaey4kaSIaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaamOzaiaacIcacaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiykaiaacMcaaeaaaeaacqGH9aqpcaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaadAgacaGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaakiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamODamaaBaaaleaacaaIYaaabeaakiaacMcacaGGPaGaaiykaaqaaaqaaiabg2da9iabeg7aHnaaBaaaleaacaaIXaaabeaakiaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGOaGaamODamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiikaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaaaa@8C84@
 
Insgesamt ist somit f 1 :WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacQdacaWGxbGaeyOKH4QaamOvaaaa@3D15@ ebenfalls ein Isomorphismus; das bedeutet: WV MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgwKiajaadAfaaaa@38D3@ .

Zu 3.:  Nach Voraussetzung gibt es Isomorphismen g:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B37@ und f:WU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGxbGaeyOKH4Qaamyvaaaa@3B35@ . Nun ist die Funktion
 

fg:VU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacaGG6aGaamOvaiabgkziUkaadwfaaaa@3D5A@

wieder bijektiv und linear, also ein Isomorphismus, d.h. aber: VU MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabgwKiajaadwfaaaa@38D1@ .
 

Zwar ist nicht jeder Homomorphismus bijektiv, aber jedem Homomorphismus ist in natürlicher Weise ein Isomophismus zugeordnet. Dieser Sachverhalt stärkt die Bedeutung der Isomorphismen und beleuchtet gleichzeitig die Rolle der Quotientenräume.

Satz (Homomorphiesatz):   f:VW MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacaWGwbGaeyOKH4Qaam4vaaaa@3B36@ sei linear. Setzt man für a+Kerf V / Kerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadUeacaWGLbGaamOCaiaayIW7caWGMbGaeyicI4SaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaadUeacaWGLbGaamOCaiaayIW7caWGMbaabeaaaSqabaaaaa@4581@

f ¯ (a+Kerf)=f(a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaraGaaiikaiaadggacqGHRaWkcaWGlbGaamyzaiaadkhacaaMi8UaamOzaiaacMcacqGH9aqpcaWGMbGaaiikaiaadggacaGGPaaaaa@436A@ ,(+)

so ist durch diese Zuordung ein Isomorphismus

f ¯ : V / Kerf Imf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaraGaaiOoaiaadAfadaWgaaWcbaGaai4lamaaBaaameaacaWGlbGaamyzaiaadkhacaaMi8UaamOzaaqabaaaleqaaOGaeyOKH4Qaaeysaiaab2gacaaMi8UaamOzaaaa@44F8@

gegeben. Also ist V / Kerf Imf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGGVaWaaSbaaWqaaiaadUeacaWGLbGaamOCaiaayIW7caWGMbaabeaaaSqabaGccqGHfjcqcaqGjbGaaeyBaiaayIW7caWGMbaaaa@427D@ .

Beweis:

Zunächst ist sicherzustellen, dass die Festsetzung in (+) wohldefiniert, d.h. vertreterunabhängig ist: Hat man aber etwa
 

a+Kerf=b+Kerf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRiaadUeacaWGLbGaamOCaiaayIW7caWGMbGaeyypa0JaamOyaiabgUcaRiaadUeacaWGLbGaamOCaiaayIW7caWGMbaaaa@44DA@ ,

so folgt: abKerf0=f(ab)=f(a)f(b)f(a)=f(b) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiaadkgacqGHiiIZcaWGlbGaamyzaiaadkhacaaMi8UaamOzaiaaywW7cqGHshI3caaMf8UaaGimaiabg2da9iaadAgacaGGOaGaamyyaiabgkHiTiaadkgacaGGPaGaeyypa0JaamOzaiaacIcacaWGHbGaaiykaiabgkHiTiaadAgacaGGOaGaamOyaiaacMcacaaMf8UaeyO0H4TaaGzbVlaadAgacaGGOaGaamyyaiaacMcacqGH9aqpcaWGMbGaaiikaiaadkgacaGGPaaaaa@60A7@ .

Wir zeigen nun:

  • f ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaraaaaa@36EC@ ist linear:
    f ¯ (α(a+Kerf)+β(b+Kerf)) = f ¯ (αa+βb+Kerf) =f(αa+βb) =αf(a)+βf(b) =α f ¯ (a+Kerf)+β f ¯ (b+Kerf) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGabmOzayaaraGaaiikaiabeg7aHjaacIcacaWGHbGaey4kaSIaam4saiaadwgacaWGYbGaaGjcVlaadAgacaGGPaGaey4kaSIaeqOSdiMaaiikaiaadkgacqGHRaWkcaWGlbGaamyzaiaadkhacaaMi8UaamOzaiaacMcacaGGPaaabaGaeyypa0JabmOzayaaraGaaiikaiabeg7aHjaadggacqGHRaWkcqaHYoGycaWGIbGaey4kaSIaam4saiaadwgacaWGYbGaaGjcVlaadAgacaGGPaaabaaabaGaeyypa0JaamOzaiaacIcacqaHXoqycaWGHbGaey4kaSIaeqOSdiMaamOyaiaacMcaaeaaaeaacqGH9aqpcqaHXoqycaWGMbGaaiikaiaadggacaGGPaGaey4kaSIaeqOSdiMaamOzaiaacIcacaWGIbGaaiykaaqaaaqaaiabg2da9iabeg7aHjqadAgagaqeaiaacIcacaWGHbGaey4kaSIaam4saiaadwgacaWGYbGaaGjcVlaadAgacaGGPaGaey4kaSIaeqOSdiMabmOzayaaraGaaiikaiaadkgacqGHRaWkcaWGlbGaamyzaiaadkhacaaMi8UaamOzaiaacMcaaaaaaa@88FA@

  • f ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaraaaaa@36EC@ ist injektiv:
    f ¯ (a+Kerf)=0 f(a)=0 aKerf a+Kerf=Kerf=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiqadAgagaqeaiaacIcacaWGHbGaey4kaSIaam4saiaadwgacaWGYbGaaGjcVlaadAgacaGGPaGaeyypa0JaaGimaaqaaiaaywW7cqGHshI3caaMf8UaamOzaiaacIcacaWGHbGaaiykaiabg2da9iaaicdaaeaaaeaacaaMf8UaeyO0H4TaaGzbVlaadggacqGHiiIZcaWGlbGaamyzaiaadkhacaaMi8UaamOzaaqaaaqaaiaaywW7cqGHshI3caaMf8UaamyyaiabgUcaRiaadUeacaWGLbGaamOCaiaayIW7caWGMbGaeyypa0Jaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGH9aqpcaaIWaaaaaaa@6CE0@

  • f ¯ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaraaaaa@36EC@ ist surjektiv:  Da Imf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaab2gacaaMi8UaamOzaaaa@3A21@ per Definition als Bildbereich festgelegt ist, hat man hier nichts zu zeigen.

 


 9.9
9.11.