9.11. Lineare Abbildungen und Matrizen


 

Wir betrachten in diesem Abschnitt gesondert die linearen Abbildungen zwischen endlichen Vektorräumen, im Prinzip also die linearen Abbildungen von m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ nach n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ . Im Abschnitt 9.8 haben wir den Funktionenaspekt bei Matrizen betont und dort u.a. gezeigt, dass die Matrixanwendung mit den Rechenregeln des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ verträglich ist, dass also Matrizen spezielle lineare Abbildungen sind. Interessant ist nun, dass damit bereits alle linearen Abbildungen gegeben sind!

In den folgenden Ausführungen legen wir für jeden n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ stets die Standardbasis zugrunde!

Bemerkung:  
  1. Jede durch eine Matrix gegebene Abbildung ( a ij ): m n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacQdacqWIDesOdaahaaWcbeqaaiaad2gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@423F@ ist linear.
  2. Jede lineare Abbildung f: m n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaad2gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3EA8@ ist (eindeutig) durch eine Matrix darstellbar. Dabei bilden die Bilder der Einheitsvektoren f( e j ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaadQgaaeqaaOGaaiykaaaa@3A3C@ die Spalten der  darstellenden Matrix: 
     
    f=( f( e 1 )f( e m ) ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maabmaabaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiablAciljaadAgacaGGOaGaamyzamaaBaaaleaacaWGTbaabeaakiaacMcaaiaawIcacaGLPaaaaaa@42FA@ .

Beweis:

1. ist mit den Rechenregeln für Matrizen in 9.8 bereits gezeigt.

Zu 2.:  Für x m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHoaaCaaaleqabaGaamyBaaaaaaa@3AF9@ hat man: f(x)=f( x 1 e 1 ++ x m e m )= x 1 f( e 1 )++ x m f( e m )=( f( e 1 )f( e m ) )x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaadwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWG4bWaaSbaaSqaaiaad2gaaeqaaOGaamyzamaaBaaaleaacaWGTbaabeaakiaacMcacqGH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiablAciljabgUcaRiaadIhadaWgaaWcbaGaamyBaaqabaGccaWGMbGaaiikaiaadwgadaWgaaWcbaGaamyBaaqabaGccaGGPaGaeyypa0ZaaeWaaeaacaWGMbGaaiikaiaadwgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeSOjGSKaamOzaiaacIcacaWGLbWaaSbaaSqaaiaad2gaaeqaaOGaaiykaaGaayjkaiaawMcaaiaadIhaaaa@64F1@ .
 

Beachte:

Die für Matrizen und lineare Abbildungen parallel gebildeten Begriffe führen nicht zu Konflikten, die eingeführten Rechenarten sind identisch. Ist z.B. f=( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@3C5C@ und g=( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9maabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@3C5E@ , so hat man:

 

Beispiel:  Nach einem Beispiel in 9.10 ist die Funktion
f: 3 3 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaaiodaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaaiodaaaaaaa@3E3D@ gegeben durch f(x)=( x 1 + x 2 x 3 x 1 x 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maabmaabaqbaeqabmqaaaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaaaa@4742@
linear. Die Bilder der Einheitsvektoren berechnet man zu f( e 1 )=( 1 0 1 ),   f( e 2 )=( 1 0 0 )   und   f( e 3 )=( 0 1 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9maabmaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaacaGGSaGaaGjbVlaadAgacaGGOaGaamyzamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaGjbVlaabwhacaqGUbGaaeizaiaaysW7caWGMbGaaiikaiaadwgadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaaGimaaqaaiaaigdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaaa@59C6@ , also ist
 
( 1 1 0 0 0 1 1 0 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaaa@3F05@
die darstellende Matrix von  f.
 


Die folgende Liste enthält einige wichtige geometrischen Standardabbildungen des n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3879@ :
 
Beispiel:  Jede der aufgeführten Funktionen ist linear; ihre darstellende Matrix ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ ist jeweils rechts notiert.
 
    1.     0: n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3E78@ ( a ij )=( 0 )=( 0 0 0 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmWaaaqaaiaaicdaaeaacqWIVlctaeaacaaIWaaabaGaeSO7I0eabaGaeSy8I8eabaGaeSO7I0eabaGaaGimaaqaaiabl+UimbqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@4CED@  .

 

    2.     id V = X V : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyAaiaabsgadaWgaaWcbaGaamOvaaqabaGccqGH9aqpcaqGybWaaSbaaSqaaiaadAfaaeqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaamOBaaaakiabgkziUkabl2riHoaaCaaaleqabaGaamOBaaaaaaa@4394@ ( a ij )=( δ ij )=( 1 0 0 0 1 0 0 0 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabqabaaaaaeaacaaIXaaabaGaaGimaaqaaiabl+UimbqaaiaaicdaaeaacaaIWaaabaGaaGymaaqaaaqaaiaaicdaaeaacqWIUlstaeaaaeaacqWIXlYtaeaacqWIUlstaeaacaaIWaaabaGaaGimaaqaaiabl+UimbqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@5399@  .

 

    3.     L α : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacqaHXoqyaeqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaamOBaaaakiabgkziUkabl2riHoaaCaaaleqabaGaamOBaaaaaaa@4064@ ( a ij )=α( δ ij )=( α 0 0 0 α 0 0 0 α ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9iabeg7aHnaabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabqabaaaaaeaacqaHXoqyaeaacaaIWaaabaGaeS47IWeabaGaaGimaaqaaiaaicdaaeaacqaHXoqyaeaaaeaacaaIWaaabaGaeSO7I0eabaaabaGaeSy8I8eabaGaeSO7I0eabaGaaGimaaqaaiaaicdaaeaacqWIVlctaeaacqaHXoqyaaaacaGLOaGaayzkaaaaaa@57E4@  .

 

    4.     P i : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaakiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3FB7@ , gegeben durch P i (x)= x i e i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bGaaiykaiabg2da9iaadIhadaWgaaWcbaGaamyAaaqabaGccaWGLbWaaSbaaSqaaiaadMgaaeqaaaaa@3F63@ ,
die Projektion auf die i-te Koordinate.
 
( a ij )=( 0 0 0 1 0 0 0 )    i-te Zeile. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabCWbaaaaaeaacaaIWaaabaaabaaabaGaeS47IWeabaaabaaabaGaaGimaaqaaaqaaiablgVipbqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaiaaicdaaeaaaeaaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaacaaIXaaabaaabaaabaGaeSO7I0eabaaabaaabaaabaaabaGaaGimaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaiablgVipbqaaaqaaiaaicdaaeaaaeaaaeaacqWIVlctaeaaaeaaaeaacaaIWaaaaaGaayjkaiaawMcaauaabeqaheaaaaqaaaqaaaqaaaqaaiabgcziSkaaysW7caWGPbGaaeylaiaabshacaqGLbGaaeiiaiaabQfacaqGLbGaaeyAaiaabYgacaqGLbGaaeOlaaqaaaqaaaqaaaaaaaa@5ADC@

 

    5.     S i : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGPbaabeaakiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3FBA@ , gegeben durch S i (x)=( x i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaWGPbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maabmaabaqbaeqabmqaaaqaaiabl6UinbqaaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaakeaacqWIUlstaaaacaGLOaGaayzkaaaaaa@43C3@  ,           
die Spiegelung in der i-ten Koordinate.
 
( a ij )=( 1 0 0 0 1 1 1 0 0 0 1 )    i-te Zeile. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabCWbaaaaaeaacaaIXaaabaGaaGimaaqaaaqaaiabl+UimbqaaaqaaaqaaiaaicdaaeaacaaIWaaabaGaeSy8I8eabaaabaaabaaabaaabaaabaaabaaabaGaaGymaaqaaaqaaaqaaaqaaaqaaiabl6UinbqaaaqaaaqaaiabgkHiTiaaigdaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaaaeaaaeaacaaIXaaabaaabaaabaaabaaabaaabaaabaaabaGaeSy8I8eabaGaaGimaaqaaiaaicdaaeaaaeaaaeaacqWIVlctaeaaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaafaqabeWbbaaaaeaaaeaaaeaaaeaacqGHqgcRcaaMe8UaamyAaiaab2cacaqG0bGaaeyzaiaabccacaqGAbGaaeyzaiaabMgacaqGSbGaaeyzaiaab6caaeaaaeaaaeaaaaaaaa@5EB5@

 

    6.     D i,α : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGPbGaaiilaiabeg7aHbqabaGccaGG6aGaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaeyOKH4QaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@41FA@ , gegeben durch D i,α (x)=( α x i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaaleaacaWGPbGaaiilaiabeg7aHbqabaGccaGGOaGaamiEaiaacMcacqGH9aqpdaqadaqaauaabeqadeaaaeaacqWIUlstaeaacqaHXoqycaWG4bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeSO7I0eaaaGaayjkaiaawMcaaaaa@46B5@  ,   
die Dehnung in der i-ten Koordinate um den Faktor a.
 
( a ij )=( 1 0 0 0 1 α 1 0 0 0 1 )    i-te Zeile. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabCWbaaaaaeaacaaIXaaabaGaaGimaaqaaaqaaiabl+UimbqaaaqaaaqaaiaaicdaaeaacaaIWaaabaGaeSy8I8eabaaabaaabaaabaaabaaabaaabaaabaGaaGymaaqaaaqaaaqaaaqaaaqaaiabl6Uinbqaaaqaaaqaaiabeg7aHbqaaaqaaaqaaiabl6UinbqaaaqaaaqaaaqaaaqaaiaaigdaaeaaaeaaaeaaaeaaaeaaaeaaaeaaaeaacqWIXlYtaeaacaaIWaaabaGaaGimaaqaaaqaaaqaaiabl+UimbqaaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaauaabeqaheaaaaqaaaqaaaqaaaqaaiabgcziSkaaysW7caWGPbGaaeylaiaabshacaqGLbGaaeiiaiaabQfacaqGLbGaaeyAaiaabYgacaqGLbGaaeOlaaqaaaqaaaqaaaaaaaa@5EAC@

 

    7.     V i,j : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGPbGaaiilaiaadQgaaeqaaOGaaiOoaiabl2riHoaaCaaaleqabaGaamOBaaaakiabgkziUkabl2riHoaaCaaaleqabaGaamOBaaaaaaa@415C@ , gegeben durch V i,j ( x i x j )=( x j x i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaWGPbGaaiilaiaadQgaaeqaaOWaaeWaaeaafaqabeqbbaaaaeaacqWIUlstaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeSO7I0eabaGaamiEamaaBaaaleaacaWGQbaabeaaaOqaaiabl6UinbaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqafeaaaaqaaiabl6UinbqaaiaadIhadaWgaaWcbaGaamOAaaqabaaakeaacqWIUlstaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeSO7I0eaaaGaayjkaiaawMcaaaaa@51DF@  ,
die Vertauschung von i-ter und j-ter Koordinate.
 
( a ij )=( 1 0 0 0 0 1 1 0 0 0 0 1 )    i-te Zeile x    j-te Zeile MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabCWbaaaaaeaacaaIXaaabaGaaGimaaqaaaqaaiabl+UimbqaaaqaaaqaaiaaicdaaeaacaaIWaaabaGaeSy8I8eabaaabaaabaaabaaabaaabaaabaaabaGaaGimaaqaaiabl+UimbqaaiaaigdaaeaaaeaaaeaacqWIUlstaeaaaeaacqWIUlstaeaaaeaacqWIUlstaeaaaeaacqWIUlstaeaaaeaaaeaacaaIXaaabaGaeS47IWeabaGaaGimaaqaaaqaaaqaaaqaaaqaaaqaaaqaaaqaaiablgVipbqaaiaaicdaaeaacaaIWaaabaaabaaabaGaeS47IWeabaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaqbaeqabCqaaaaabaaabaaabaGaeyiKHWQaaGjbVlaadMgacaqGTaGaaeiDaiaabwgacaqGGaGaaeOwaiaabwgacaqGPbGaaeiBaiaabwgaaeaaaeaacqGHqgcRcaaMe8UaamOAaiaab2cacaqG0bGaaeyzaiaabccacaqGAbGaaeyzaiaabMgacaqGSbGaaeyzaaqaaaqaaaaaaaa@71A7@ .

 

    8.     R i,j,α : n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGPbGaaiilaiaadQgacaGGSaGaeqySdegabeaakiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@43A7@ , gegeben durch  
  R i,j,α ( x i x j )=( x i cosα x j sinα x i sinα+ x j cosα ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGPbGaaiilaiaadQgacaGGSaGaeqySdegabeaakmaabmaabaqbaeqabuqaaaaabaGaeSO7I0eabaGaamiEamaaBaaaleaacaWGPbaabeaaaOqaaiabl6UinbqaaiaadIhadaWgaaWcbaGaamOAaaqabaaakeaacqWIUlstaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeqbbaaaaeaacqWIUlstaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdeMaeyOeI0IaamiEamaaBaaaleaacaWGQbaabeaakiGacohacaGGPbGaaiOBaiabeg7aHbqaaiabl6UinbqaaiaadIhadaWgaaWcbaGaamyAaaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaci4yaiaac+gacaGGZbGaeqySdegabaGaeSO7I0eaaaGaayjkaiaawMcaaaaa@6C0E@  , ( a ij )=( 1 0 0 0 cosα sinα sinα cosα 0 0 0 1 )    i-te Zeile x    j-te Zeile MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabCWbaaaaaeaacaaIXaaabaGaaGimaaqaaaqaaiabl+UimbqaaaqaaaqaaiaaicdaaeaacaaIWaaabaGaeSy8I8eabaaabaaabaaabaaabaaabaaabaaabaGaci4yaiaac+gacaGGZbGaeqySdegabaGaeS47IWeabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqySdegabaaabaaabaGaeSO7I0eabaaabaGaeSO7I0eabaaabaGaeSO7I0eabaaabaGaeSO7I0eabaaabaaabaGaci4CaiaacMgacaGGUbGaeqySdegabaGaeS47IWeabaGaci4yaiaac+gacaGGZbGaeqySdegabaaabaaabaaabaaabaaabaaabaaabaGaeSy8I8eabaGaaGimaaqaaiaaicdaaeaaaeaaaeaacqWIVlctaeaaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaafaqabeWbbaaaaeaaaeaaaeaacqGHqgcRcaaMe8UaamyAaiaab2cacaqG0bGaaeyzaiaabccacaqGAbGaaeyzaiaabMgacaqGSbGaaeyzaaqaaaqaaiabgcziSkaaysW7caWGQbGaaeylaiaabshacaqGLbGaaeiiaiaabQfacaqGLbGaaeyAaiaabYgacaqGLbaabaaabaaaaaaa@817C@ .
  die Drehung (Rotation) um den Winkel α in der i, j-Ebene.
 
 
 

  


 

Bei den linearen Abbildungen ist die Summe und das α-fache bereits auf Matrixebene darstellbar. Zur Hintereinanderausführung fehlt bislang eine entsprechende Rechenmethode. Diese Lücke füllt nun das Matrizenprodukt:
 
Definition:  Ist ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ eine k × n - Matrix und ( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6C@ eine n × m - Matrix, so heißt die k × m - Matrix

( a ij )( b ij )=( a ij )( b ij )=( a i b j ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaamyyamaaBaaaleaacaWGPbGaeyOiGClabeaakiabgwSixlaadkgadaWgaaWcbaGaeyOiGCRaamOAaaqabaaakiaawIcacaGLPaaaaaa@573C@

das Produkt von ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ und ( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6C@ .
 

Beachte:

 
Beispiel:  

( 3 1 4 0 2 7 )( 3 0 1 2 )=( ( 3 1 )( 3 1 ) ( 3 1 )( 0 2 ) ( 4 0 )( 3 1 ) ( 4 0 )( 0 2 ) ( 2 7 )( 3 1 ) ( 2 7 )( 0 2 ) )=( 10 2 12 0 13 14 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWacaaabaGaaG4maaqaaiaaigdaaeaacaaI0aaabaGaaGimaaqaaiaaikdaaeaacaaI3aaaaaGaayjkaiaawMcaaiabgwSixpaabmaabaqbaeqabiGaaaqaaiaaiodaaeaacaaIWaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeWacaaabaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaikdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGabaaabaGaaGinaaqaaiaaicdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGabaaabaGaaGinaaqaaiaaicdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaikdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGabaaabaGaaGOmaaqaaiaaiEdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaG4maaqaaiaaigdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaafaqabeGabaaabaGaaGOmaaqaaiaaiEdaaaaacaGLOaGaayzkaaGaeyyXIC9aaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmGaaaqaaiaaigdacaaIWaaabaGaaGOmaaqaaiaaigdacaaIYaaabaGaaGimaaqaaiaaigdacaaIZaaabaGaaGymaiaaisdaaaaacaGLOaGaayzkaaaaaa@81C2@ .
 


 
Bemerkung:   g: m n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacQdacqWIDesOdaahaaWcbeqaaiaad2gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3EA9@ und f: n k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaadUgaaaaaaa@3EA6@ seien zwei lineare Abbildungen. Sind ( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6C@ und ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ die darstellenden Matrizen von g bzw.  f, so ist ( a ij )( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgwSixpaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@4138@ die darstellende Matrix von fg: m k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacaGG6aGaeSyhHe6aaWbaaSqabeaacaWGTbaaaOGaeyOKH4QaeSyhHe6aaWbaaSqabeaacaWGRbaaaaaa@40CB@ :
 
fg=( a ij )( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaadEgacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@454F@ .

Beweis: Es reicht zu zeigen, dass die Spaltenvektoren von ( a ij )( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgwSixpaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@4138@ die Bilder der Einheitsvektoren e 1 ,, e m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyzamaaBaaaleaacaWGTbaabeaaaaa@3C4E@ des m MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGTbaaaaaa@3878@ sind. Wir nutzen dabei aus, dass man das Matrix-Bild eines Vektors sowohl mit Hilfe der Spalten- als auch mit Hilfe der Zeilenvektoren berechnen kann.

f(g( e j )) =f( b j ) =f( b 1j e 1 ++ b nj e n ) = b 1j f( e 1 )++ b nj f( e n ) = b 1j a 1 ++ b nj a n =( a ij ) b j "Spaltenvektormethode" =( a 1 b j a k b j ) "Zeilenvektormethode" MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabyWaaaaabaGaamOzaiaacIcacaWGNbGaaiikaiaadwgadaWgaaWcbaGaamOAaaqabaGccaGGPaGaaiykaaqaaiabg2da9iaadAgacaGGOaGaamOyamaaBaaaleaacqGHIaYTcaWGQbaabeaakiaacMcaaeaaaeaaaeaacqGH9aqpcaWGMbGaaiikaiaadkgadaWgaaWcbaGaaGymaiaadQgaaeqaaOGaamyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiablAciljabgUcaRiaadkgadaWgaaWcbaGaamOBaiaadQgaaeqaaOGaamyzamaaBaaaleaacaWGUbaabeaakiaacMcaaeaaaeaaaeaacqGH9aqpcaWGIbWaaSbaaSqaaiaaigdacaWGQbaabeaakiaadAgacaGGOaGaamyzamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqWIMaYscqGHRaWkcaWGIbWaaSbaaSqaaiaad6gacaWGQbaabeaakiaadAgacaGGOaGaamyzamaaBaaaleaacaWGUbaabeaakiaacMcaaeaaaeaaaeaacqGH9aqpcaWGIbWaaSbaaSqaaiaaigdacaWGQbaabeaakiaadggadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccqGHRaWkcqWIMaYscqGHRaWkcaWGIbWaaSbaaSqaaiaad6gacaWGQbaabeaakiaadggadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakeaaaeaaaeaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaWGQbaabeaaaOqaaiaaywW7caqGIaGaae4uaiaabchacaqGHbGaaeiBaiaabshacaqGLbGaaeOBaiaabAhacaqGLbGaae4AaiaabshacaqGVbGaaeOCaiaab2gacaqGLbGaaeiDaiaabIgacaqGVbGaaeizaiaabwgacaqGIaaabaaabaGaeyypa0ZaaeWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaaIXaGaeyOiGClabeaakiabgwSixlaadkgadaWgaaWcbaGaeyOiGCRaamOAaaqabaaakeaacqWIUlstaeaacaWGHbWaaSbaaSqaaiaadUgacqGHIaYTaeqaaOGaeyyXICTaamOyamaaBaaaleaacqGHIaYTcaWGQbaabeaaaaaakiaawIcacaGLPaaaaeaacaaMf8UaaeOiaiaabQfacaqGLbGaaeyAaiaabYgacaqGLbGaaeOBaiaabAhacaqGLbGaae4AaiaabshacaqGVbGaaeOCaiaab2gacaqGLbGaaeiDaiaabIgacaqGVbGaaeizaiaabwgacaqGIaaaaaaa@C059@

Der zum Schluß notierte Vektor ist aber gerade der  j-te Spaltenvektor der Produktmatrix ( a ij )( b ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgwSixpaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@4138@ .
 

 
Beachte:

Wir untersuchen nun, wie sich die Matrizenmultiplikation zu den anderen Rechenoperationen verhält. Zwar sind die erwarteten Verträglichkeitsregeln tatsächlich auch gegeben, da aber die Matrizenmultiplikation nicht kommutativ ist, sind stets zwei Versionen der jeweiligen Regel zu formulieren und zu beweisen!
 
Bemerkung:  Die Matrizenmultiplikation ist
 
     1.  distributiv bzgl. der Vektoraddition:
 
(( a ij )+( b ij ))( c ij )=( a ij )( c ij )+( b ij )( c ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykamaabmaabaGaam4yamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@59A2@ .
 
( a ij )(( b ij )+( c ij ))=( a ij )( b ij )+( a ij )( c ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacIcadaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacMcacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@59A0@ .

 

     2.  distributiv bzgl. der Vektorsubtraktion:        
 
(( a ij )( b ij ))( c ij )=( a ij )( c ij )( b ij )( c ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHsisldaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykamaabmaabaGaam4yamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@59B8@ .
 
( a ij )(( b ij )( c ij ))=( a ij )( b ij )( a ij )( c ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacIcadaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacMcacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@59B6@ .

 

     3.  verträglich mit der skalaren Multiplikation:  (α( a ij ))( b ij )=α(( a ij )( b ij ))=( a ij )(α( b ij )) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg7aHnaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGPaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9iabeg7aHjaacIcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacMcacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiikaiabeg7aHnaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGPaaaaa@5BEC@ .

 

Beweis:  In allen Fällen können wir die Behauptung auf die bekannten Rechenregeln für Matrizen zurückführen, denn die Spaltenvekoren der Produktmatrix sind ja Vektoren der Form ( a ij )x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhaaaa@3B68@ .

 
Zu 1.: (( a ij )+( b ij ))( c ij ) =( (( a ij )+( b ij )) c 1       (( a ij )+( b ij )) c n ) =( ( a ij ) c 1 +( b ij ) c 1       ( a ij ) c n +( b ij ) c n ) =( ( a ij ) c 1       ( a ij ) c n )+( ( b ij ) c 1       ( b ij ) c n ) =( a ij )( c ij )+( b ij )( c ij ). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqWaaaaabaGaaeOwaiaabwhacaqGGaGaaeymaiaab6cacaqG6aGaaGzbVdqaaiaacIcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacMcadaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaabaGaeyypa0ZaaeWaaeaacaGGOaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGPaGaam4yamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaaysW7cqWIMaYscaaMe8UaaiikamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykaiaadogadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacqGH9aqpdaqadaqaamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaey4kaSYaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadogadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccaaMe8UaeSOjGSKaaGjbVpaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaad6gaaeqaaOGaey4kaSYaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadogadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacqGH9aqpdaqadaqaamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaaGjbVlablAciljaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaam4yamaaBaaaleaacqGHIaYTcaWGUbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadogadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccaaMe8UaeSOjGSKaaGjbVpaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaad6gaaeqaaaGccaGLOaGaayzkaaaabaaabaaabaGaeyypa0ZaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam4yamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGJbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaab6caaaaaaa@DAB9@
 
und: ( a ij )(( b ij )+( c ij )) =( ( a ij )( b 1 + c 1 )      ( a ij )( b n + c n ) ) =( ( a ij ) b 1 +( a ij ) c 1       ( a ij ) b n +( a ij ) c n ) =( ( a ij ) b 1       ( a ij ) b n )+( ( a ij ) c 1       ( a ij ) c n ) =( a ij )( b ij )+( a ij )( c ij ). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqWaaaaabaGaaeyDaiaab6gacaqGKbGaaeOoaiaaywW7aeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiikamaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaadogadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykaaqaaiabg2da9maabmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacIcacaWGIbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaacMcacaaMe8UaeSOjGSKaaGjbVpaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGOaGaamOyamaaBaaaleaacqGHIaYTcaWGUbaabeaakiabgUcaRiaadogadaWgaaWcbaGaeyOiGCRaamOBaaqabaGccaGGPaaacaGLOaGaayzkaaaabaaabaaabaGaeyypa0ZaaeWaaeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaaIXaaabeaakiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaaGjbVlablAciljaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaWGUbaabeaakiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaad6gaaeqaaaGccaGLOaGaayzkaaaabaaabaaabaGaeyypa0ZaaeWaaeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaaysW7cqWIMaYscaaMe8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGJbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaaGjbVlablAciljaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaam4yamaaBaaaleaacqGHIaYTcaWGUbaabeaaaOGaayjkaiaawMcaaaqaaaqaaaqaaiabg2da9maabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaam4yamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaqGUaaaaaaa@D78E@
 

2. führt man mit 3. sofort auf 1. zurück.

 
Zu 3.: (α( a ij ))( b ij ) =( (α( a ij )) b 1       (α( a ij )) b n ) =( α(( a ij ) b 1 )      α(( a ij ) b n ) ) =α( ( a ij ) b 1       ( a ij ) b n ) =α(( a ij )( b ij )). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqWaaaaabaGaaeOwaiaabwhacaqGGaGaae4maiaab6cacaqG6aGaaGzbVdqaaiaacIcacqaHXoqydaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykamaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaeaacqGH9aqpdaqadaqaaiaacIcacqaHXoqydaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykaiaadkgadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccaaMe8UaeSOjGSKaaGjbVlaacIcacqaHXoqydaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiykaiaadkgadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacqGH9aqpdaqadaqaaiabeg7aHjaacIcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaacMcacaaMe8UaeSOjGSKaaGjbVlabeg7aHjaacIcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaWGUbaabeaakiaacMcaaiaawIcacaGLPaaaaeaaaeaaaeaacqGH9aqpcqaHXoqydaqadaqaamaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWGIbWaaSbaaSqaaiabgkci3kaaigdaaeqaaOGaaGjbVlablAciljaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaWGUbaabeaaaOGaayjkaiaawMcaaaqaaaqaaaqaaiabg2da9iabeg7aHjaacIcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaacMcacaqGUaaaaaaa@A7A0@
 
und: ( a ij )(α( b ij )) =( ( a ij )(α b 1 )      ( a ij )(α b n ) ) =( α(( a ij ) b 1 )      α(( a ij ) b n ) ) =α( ( a ij ) b 1       ( a ij ) b n ) =α(( a ij )( b ij )). MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqWaaaaabaGaaeyDaiaab6gacaqGKbGaaeOoaiaaywW7aeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiikaiabeg7aHnaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGPaaabaGaeyypa0ZaaeWaaeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiikaiabeg7aHjaadkgadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccaGGPaGaaGjbVlablAciljaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiikaiabeg7aHjaadkgadaWgaaWcbaGaeyOiGCRaamOBaaqabaGccaGGPaaacaGLOaGaayzkaaaabaaabaaabaGaeyypa0ZaaeWaaeaacqaHXoqycaGGOaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccaGGPaGaaGjbVlablAciljaaysW7cqaHXoqycaGGOaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaeyOiGCRaamOBaaqabaGccaGGPaaacaGLOaGaayzkaaaabaaabaaabaGaeyypa0JaeqySde2aaeWaaeaadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaBaaaleaacqGHIaYTcaaIXaaabeaakiaaysW7cqWIMaYscaaMe8+aaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadkgadaWgaaWcbaGaeyOiGCRaamOBaaqabaaakiaawIcacaGLPaaaaeaaaeaaaeaacqGH9aqpcqaHXoqycaGGOaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamOyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaGGPaGaaeOlaaaaaaa@A691@
 

 

Wir wenden uns nun den Isomorphismen in Hom( n , n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeisaiaab+gacaqGTbGaaiikaiabl2riHoaaCaaaleqabaGaamOBaaaakiaacYcacqWIDesOdaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@3FD3@ und ihren darstellenden Matrizen zu.
  
Bemerkung:    f: n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOdaahaaWcbeqaaiaad6gaaaGccqGHsgIRcqWIDesOdaahaaWcbeqaaiaad6gaaaaaaa@3EA9@ sei linear. Dann gilt:

f  ist Isomorphismus Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGlbGaamyzaiaadkhacaaMi8UaamOzaiabg2da9iaacUhacaaIWaGaaiyFaaaa@444E@ .
 

Beweis:  Nach einer Bemerkung im letzten Abschnitt wissen wir:

f  injektiv Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlabgsDiBlaaywW7caWGlbGaamyzaiaadkhacaaMi8UaamOzaiabg2da9iaacUhacaaIWaGaaiyFaaaa@444E@ .
 
Damit ist diese Richtung " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3846@ " bereits bewiesen, und zur Gültigkeit von " MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi0HWnaaa@3842@ " fehlt nur noch der Nachweis der Surjektivität.

Ist aber Kerf={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbGaaGjcVlaadAgacqGH9aqpcaGG7bGaaGimaiaac2haaaa@3ED6@ , so erhält f die lineare Unabhängigkeit. Mit e 1 ,, e n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyzamaaBaaaleaacaWGUbaabeaaaaa@3C4F@ ist also auch

f( e 1 ),,f( e n )   linear unabhängig in    n f( e 1 ),,f( e n )   Basis des    n n =<f( e 1 ),,f( e n )>=f(< e 1 ,, e n >) f   ist surjektiv. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaaabaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaaysW7caqGSbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGaGaaeyDaiaab6gacaqGHbGaaeOyaiaabIgacaqGKdGaaeOBaiaabEgacaqGPbGaae4zaiaabccacaqGPbGaaeOBaiaaysW7cqWIDesOdaahaaWcbeqaaiaad6gaaaaakeaacqGHshI3caaMf8oabaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiaacYcacqWIMaYscaGGSaGaamOzaiaacIcacaWGLbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaaysW7caqGcbGaaeyyaiaabohacaqGPbGaae4CaiaabccacaqGKbGaaeyzaiaabohacaaMe8UaeSyhHe6aaWbaaSqabeaacaWGUbaaaaGcbaGaeyO0H4TaaGzbVdqaaiabl2riHoaaCaaaleqabaGaaeOBaaaakiabg2da9iabgYda8iaadAgacaGGOaGaamyzamaaBaaaleaacaaIXaaabeaakiaacMcacaGGSaGaeSOjGSKaaiilaiaadAgacaGGOaGaamyzamaaBaaaleaacaWGUbaabeaakiaacMcacqGH+aGpcqGH9aqpcaWGMbGaaiikaiabgYda8iaadwgadaWgaaWcbaGaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiaadwgadaWgaaWcbaGaamOBaaqabaGccqGH+aGpcaGGPaaabaGaeyO0H4TaaGzbVdqaaiaadAgacaaMe8UaaeyAaiaabohacaqG0bGaaeiiaiaabohacaqG1bGaaeOCaiaabQgacaqGLbGaae4AaiaabshacaqGPbGaaeODaiaab6caaaaaaa@A8F4@
  


Beachte:

Die regulären n × n - Matrizen stellen somit genau die Isomorphismen von n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaeyOKH4QaeSyhHe6aaWbaaSqabeaacaWGUbaaaaaa@3D00@ dar. Man hat daher insbesondere:

 

 
Beispiel:  Wir ermitteln in diesem Beispiel zu einigen regulären 2 × 2 - Matrizen die inverse Matrix. Dabei liegt stets der entsprechende inverse Isomorphismus  f -1 vor, so dass man nur die zu  f -1 gehörige Matrix aufzustellen hat.
  1. Die Spiegelung in der ersten Koordinate ist zu sich selbst invers. Also ist
     
    ( 1 0 0 1 ) 1 =( 1 0 0 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGacaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpdaqadaqaauaabeqaciaaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaaaa@43AE@

  2. Die Dehnung in der zweiten Koordinate um einen Faktor α0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyiyIKRaaGimaaaa@3A09@ hat die Dehnung um den Faktor 1 α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaeqySdegaaaaa@3853@ als inversen Isomorphismus. D.h.:
     
    ( 1 0 0 α ) 1 =( 1 0 0 1 α ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGacaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaeqySdegaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9maabmaabaqbaeqabiGaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaamaalmaaleaacaaIXaaabaGaeqySdegaaaaaaOGaayjkaiaawMcaaaaa@447F@

  3. Die Drehung um einen Winkel α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3788@ wird durch die Drehung um den Winkel α MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeqySdegaaa@3875@ aufgehoben.Also gilt:
     
    ( cosα sinα sinα cosα ) 1 =( cos(α) sin(α) sin(α) cos(α) )=( cosα sinα sinα cosα ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeGacaaabaGaci4yaiaac+gacaGGZbGaeqySdegabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqySdegabaGaci4CaiaacMgacaGGUbGaeqySdegabaGaci4yaiaac+gacaGGZbGaeqySdegaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9maabmaabaqbaeqabiGaaaqaaiGacogacaGGVbGaai4CaiaacIcacqGHsislcqaHXoqycaGGPaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaaiikaiabgkHiTiabeg7aHjaacMcaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeyOeI0IaeqySdeMaaiykaaqaaiGacogacaGGVbGaai4CaiaacIcacqGHsislcqaHXoqycaGGPaaaaaGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabiGaaaqaaiGacogacaGGVbGaai4Caiabeg7aHbqaaiGacohacaGGPbGaaiOBaiabeg7aHbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeg7aHbqaaiGacogacaGGVbGaai4Caiabeg7aHbaaaiaawIcacaGLPaaaaaa@7FF4@

 

Wie geht man aber nun im allgemeinen Fall vor, wenn also  f -1 nicht bekannt ist? Interessanterweise kann man hier den Gauß-Algorithmus einsetzen, denn die Suche nach (der eindeutig bestimmten Matrix) ( a ij ) 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3C40@ entspricht direkt der Aufgabe, die Matrizengleichung

( a ij )( x ij )=( δ ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaabmaabaGaamiEamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaaaa@454B@

zu lösen. Da nun die Spaltenvektoren von ( δ ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ gerade die Einheitsvektoren e 1 ,, e n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBaaaleaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaamyzamaaBaaaleaacaWGUbaabeaaaaa@3C4F@ sind, ist die Gleichung äquivalent zu den folgenden n (gewöhnlichen) linearen Gleichungen:

( a ij ) x 1 = e 1 ( a ij ) x 2 = e 2 ( a ij ) x n = e n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaaaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhadaWgaaWcbaGaeyOiGCRaaGymaaqabaGccqGH9aqpcaWGLbWaaSbaaSqaaiaaigdaaeqaaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhadaWgaaWcbaGaeyOiGCRaaGOmaaqabaGccqGH9aqpcaWGLbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeSO7I0eabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhadaWgaaWcbaGaeyOiGCRaamOBaaqabaGccqGH9aqpcaWGLbWaaSbaaSqaaiaad6gaaeqaaaaaaaa@58D2@

 

Damit erhält man nun das folgende Schema zur Errechnung von ( a ij ) 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3C40@ :

  1. Mit der Gleichung ( a ij )x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaaIWaaaaa@3D28@ prüft man zunächst ob ( a ij ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaaa@3A6B@ regulär ist, also ob Ker( a ij )={0} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadwgacaWGYbWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9iaacUhacaaIWaGaaiyFaaaa@40DC@ zutrifft. 
  2. Man löst dann der Reihe nach die Gleichungen ( a ij )x= e 1 ,,( a ij )x= e n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiablAciljaacYcadaqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamiEaiabg2da9iaadwgadaWgaaWcbaGaamOBaaqabaaaaa@4959@ .
  3. Die Lösungsvektoren bilden nun in der gewonnenen Reihenfolge die Spaltenvektoren der gesuchten Matrix ( a ij ) 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@3C40@ .

Bei der praktischen Durchführung kann man natürlich das Gauß-Applet für sich arbeiten lassen!

 
Beispiel:  Wir betrachten in diesem Beispiel die Matrix ( a ij )=( 2 0 1 0 2 2 1 1 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabmWaaaqaaiaaikdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaacaaIYaaabaGaaGOmaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaaaaa@43A4@ . Der Gauß-Algorithmus liefert nun die folgenden Daten: ( a ij )x=0x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaaIWaGaaGzbVlabgsDiBlaaywW7caWG4bGaeyypa0JaaGimaaaa@455D@ und:
( a ij )x= e 1 x=( 1 3 1 3 1 3 ),   ( a ij )x= e 2 x=( 1 6 1 6 1 3 ),   ( a ij )x= e 3 x=( 1 3 2 3 2 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGHbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaadIhacqGH9aqpcaWGLbWaaSbaaSqaaiaaigdaaeqaaOGaaGzbVlabgsDiBlaaywW7caWG4bGaeyypa0ZaaeWaaeaafaqabeWabaaabaWaaSWaaSqaaiaaigdaaeaacaaIZaaaaaGcbaGaeyOeI0YaaSWaaSqaaiaaigdaaeaacaaIZaaaaaGcbaWaaSWaaSqaaiaaigdaaeaacaaIZaaaaaaaaOGaayjkaiaawMcaaiaaykW7caGGSaGaaGjbVpaabmaabaGaamyyamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaacaWG4bGaeyypa0JaamyzamaaBaaaleaacaaIYaaabeaakiaaywW7cqGHuhY2caaMf8UaamiEaiabg2da9maabmaabaqbaeqabmqaaaqaaiabgkHiTmaalmaaleaacaaIXaaabaGaaGOnaaaaaOqaamaalmaaleaacaaIXaaabaGaaGOnaaaaaOqaamaalmaaleaacaaIXaaabaGaaG4maaaaaaaakiaawIcacaGLPaaacaaMc8UaaiilaiaaysW7daqadaqaaiaadggadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaamiEaiabg2da9iaadwgadaWgaaWcbaGaaG4maaqabaGccaaMf8Uaeyi1HSTaaGzbVlaadIhacqGH9aqpdaqadaqaauaabeqadeaaaeaadaWcdaWcbaGaaGymaaqaaiaaiodaaaaakeaadaWcdaWcbaGaaGOmaaqaaiaaiodaaaaakeaacqGHsisldaWcdaWcbaGaaGOmaaqaaiaaiodaaaaaaaGccaGLOaGaayzkaaaaaa@8344@ .

Also ist ( 2 0 1 0 2 2 1 1 0 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaikdaaeaacaaIYaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaaaaa@3E1C@ regulär und ( 2 0 1 0 2 2 1 1 0 ) 1 =( 1 3 1 6 1 3 1 3 1 6 2 3 1 3 1 3 2 3 )= 1 6 ( 2 1 2 2 1 4 2 2 4 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaGaaGOmaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaikdaaeaacaaIYaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9maabmaabaqbaeqabmWaaaqaamaalmaaleaacaaIXaaabaGaaG4maaaaaOqaaiabgkHiTmaalmaaleaacaaIXaaabaGaaGOnaaaaaOqaamaalmaaleaacaaIXaaabaGaaG4maaaaaOqaaiabgkHiTmaalmaaleaacaaIXaaabaGaaG4maaaaaOqaamaalmaaleaacaaIXaaabaGaaGOnaaaaaOqaamaalmaaleaacaaIYaaabaGaaG4maaaaaOqaamaalmaaleaacaaIXaaabaGaaG4maaaaaOqaamaalmaaleaacaaIXaaabaGaaG4maaaaaOqaaiabgkHiTmaalmaaleaacaaIYaaabaGaaG4maaaaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI2aaaamaabmaabaqbaeqabmWaaaqaaiaaikdaaeaacqGHsislcaaIXaaabaGaaGOmaaqaaiabgkHiTiaaikdaaeaacaaIXaaabaGaaGinaaqaaiaaikdaaeaacaaIYaaabaGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaaaaa@61A6@  .

 


 9.10
9.12.