5.7. Monotone und beschränkte Folgen


Im letzten Abschnitt konnten wir bequem und schnell über das Grenzwertverhalten von Folgen entscheiden. Die Grenzwertsätze lieferten die nötigen Techniken. Allerdings ist der Bereich der Folgen, die mit dieser Methode bearbeitet werden können, deutlich eingeschränkt, denn die Folgen müssen ja eine bestimmte Struktur aufweisen. Es ist daher sinnvoll, nach weiteren Konvergenztests zu suchen.

Wir greifen noch einmal die Eigenschaften monoton und beschränkt auf. Beide haben allein keinen bzw. nur einen geringen Bezug zur Konvergenz. Ihre Kombination aber ist überraschenderweise sehr günstig und liefert ein oft benutztes Konvergenzkriterium. Im Unterschied zu den Grenzwertsätzen allerdings gibt es keine Auskunft über den Grenzwert selbst. Außerdem ist seine Gültigkeit streng an die reellen Zahlen gebunden; auf Folgen in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOgHqkaaa@36D9@ etwa, ist es nicht anwendbar (siehe [5.7.11]).

Satz:  Für jede reelle Zahlenfolge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ gilt:

Ist ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ monoton und beschränkt, so ist ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ auch konvergent.
[5.7.1]

Beweis:  Wir führen den Beweis für eine monoton wachsende Folge. Zunächst gibt es auf Grund der Beschränktheit ein s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgIGiolabl2riHcaa@3955@ , so dass

a n s  für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgsMiJkaadohacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaaaaa@46CE@ .

Die Menge der Folgenglieder { a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaamOBaaqabaGccaGG8bGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaOGaaiyFaaaa@3F81@ ist also eine nicht-leere, nach oben beschränkte Teilmenge von MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ . Sie besitzt - und hier geht die Besonderheit der reellen Zahlen ein - nach dem Vollständigkeitsaxiom eine kleinste obere Schranke, das Supremum also. Wir setzen nun  gsup{ a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iGacohacaGG1bGaaiiCaiaacUhacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaaiiFaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaakiaac2haaaa@4459@   und zeigen:

a n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaadEgaaaa@3A51@

Sei dazu ein ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@38D2@ vorgegeben. Da g die kleinste obere Schranke von { a n |n } MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadggadaWgaaWcbaGaamOBaaqabaGccaGG8bGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaOGaaiyFaaaa@3F81@ ist, kann gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLbaa@38E9@ keine obere Schranke mehr sein. Es muß also mindestens ein Folgenglied oberhalb von gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLbaa@38E9@ liegen, d.h. es gibt ein n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBaaaleaacaaIWaaabeaakiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3B58@ , so dass a n 0 >gε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbWaaSbaaWqaaiaaicdaaeqaaaWcbeaakiabg6da+iaadEgacqGHsislcqaH1oqzaaa@3CF2@ . Beachtet man, dass g auch eine gewöhnliche obere Schranke der monoton wachsenden Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ ist, so erhält man für alle n n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaaaaa@39FB@ :

gε< a n 0 a n g<g+ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgkHiTiabew7aLjabgYda8iaadggadaWgaaWcbaGaamOBamaaBaaameaacaaIWaaabeaaaSqabaGccqGHKjYOcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaam4zaiabgYda8iaadEgacqGHRaWkcqaH1oqzaaa@47CC@ ,

also  a n ]gε,g+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgIGiolaac2facaWGNbGaeyOeI0IaeqyTduMaaiilaiaadEgacqGHRaWkcqaH1oqzcaGGBbaaaa@4261@ . Gemäß [5.4.2] ist dies die Behauptung.

Bei der Anwendung des neuen Kriteriums "monoton und beschränkt" gehen wir stets in zwei Schritten vor: Zunächst erhalten wir die reine Konvergenzaussage, anschließend ermitteln wir den Grenzwert selbst.

In einem ersten Beispiel studieren wir Folgen des Typs ( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ .

Bemerkung:  Für q MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgIGiolabl2riHcaa@3953@ hat man:

|q|<1 q n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyipaWJaaGymaiabgkDiElaadghadaahaaWcbeqaaiaad6gaaaGccqGHsgIRcaaIWaaaaa@4142@

[5.7.2]

|q|>1( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyOpa4JaaGymaiabgkDiElaacIcacaWGXbWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3FF8@   ist divergent

[5.7.3]

Beweis:  
1.  

Nach [5.5.6] reicht es | q n |=|q | n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghadaahaaWcbeqaaiaad6gaaaGccaGG8bGaeyypa0JaaiiFaiaadghacaGG8bWaaWbaaSqabeaacaWGUbaaaOGaeyOKH4QaaGimaaaa@4156@ zu zeigen, so dass wir o.E. 0q<1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadghacqGH8aapcaaIXaaaaa@3A8D@ annehmen dürfen. Wir multiplizieren diese Ungleichung mit q n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaGaamOBaaaaaaa@377F@ und erhalten

0 q n+1 q n <1  für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizImQaamyCamaaCaaaleqabaGaamOBaaaakiabgYda8iaaigdacaqGMbGaaei=aiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeyzaiaad6gacqGHiiIZcqWIvesPdaahaaWcbeqaaiabgEHiQaaaaaa@4DD2@ .

( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ ist also monoton fallend und beschränkt, somit konvergent, etwa gegen g.

Bleibt zu zeigen g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaicdaaaa@3815@ . Dazu betrachten wir zusätzlich die Folge ( q n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiykaaaa@3A7F@ , die ebenfalls gegen g konvergiert, und benutzen einen kleinen Trick, indem wir den Grenzwert von ( q n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiykaaaa@3A7F@ über den dritten Grenzwertsatz ein zweites Mal berechnen. Also:

q n+1 g q n+1 =q q n qg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaaqaaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyOKH4Qaam4zaaqaaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyypa0JaamyCaiabgwSixlaadghadaahaaWcbeqaaiaad6gaaaGccqGHsgIRcaWGXbGaeyyXICTaam4zaaaaaaa@4C47@

Da aber ( q n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiykaaaa@3A7F@ genau einen Grenzwert hat, muss  g=qgg(1q)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadghacqGHflY1caWGNbGaeyi1HSTaam4zaiabgwSixlaacIcacaaIXaGaeyOeI0IaamyCaiaacMcacqGH9aqpcaaIWaaaaa@46D0@   gelten, also g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaaicdaaaa@3815@ , denn nach Voraussetzung ist q1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgcMi5kaaigdaaaa@38E1@ .

2.  

Für |q|>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyOpa4JaaGymaaaa@3A22@ , etwa |q|=1+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyypa0JaaGymaiabgUcaRiaadIhaaaa@3BFF@   mit einem x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@3828@ , folgt mit der Bernoullischen Ungleichung

| q n |=|q | n = (1+x) n 1+nx. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghadaahaaWcbeqaaiaad6gaaaGccaGG8bGaeyypa0JaaiiFaiaadghacaGG8bWaaWbaaSqabeaacaWGUbaaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcaWG4bGaaiykamaaCaaaleqabaGaamOBaaaakiabgwMiZkaaigdacqGHRaWkcaWGUbGaamiEaaaa@4A25@

Mit (1+nx) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkcaWGUbGaamiEaiaacMcaaaa@3A4F@ ist daher auch ( q n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadghadaahaaWcbeqaaiaad6gaaaGccaGGPaaaaa@38E2@ unbeschränkt, also divergent.

Beachte:

  • Der Fall |q|=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadghacaGG8bGaeyypa0JaaGymaaaa@3A20@ ist bereits bekannt: ( (1) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaaaakiaacMcaaaa@3AED@ ist divergent und 1 n =11 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaaCaaaleqabaGaamOBaaaakiabg2da9iaaigdacqGHsgIRcaaIXaaaaa@3BB7@ .
     

Wir setzen das Kriterium erneut ein, um den bekannten Konvergenzen 1 n k 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaam4AaaaaaaGccqGHsgIRcaaIWaaaaa@3AF5@ weitere hinzuzufügen.

Bemerkung:  Für r,s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacYcacaWGZbGaeyicI4SaeSyfHu6aaWbaaSqabeaacqGHxiIkaaaaaa@3C14@ und  q r s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2da9maalaaabaGaamOCaaqaaiaadohaaaaaaa@3964@   gilt:

1 n s 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiabgkziUkaaicdaaaa@3AEB@

[5.7.4]

1 n q 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaamyCaaaaaaGccqGHsgIRcaaIWaaaaa@3AFB@

[5.7.5]

Beweis:  
1.  

Die Monotonie des Wurzeloperators liefert für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ die folgenden Ungleichungen:

1nn+1 1 n s n+1 s 1 1 n s 1 n+1 s 0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaaqaaiaaigdacqGHKjYOcaWGUbGaeyizImQaamOBaiabgUcaRiaaigdaaeaacqGHshI3aeaacaaIXaGaeyizIm6aaOqaaeaacaWGUbaaleaacaWGZbaaaOGaeyizIm6aaOqaaeaacaWGUbGaey4kaSIaaGymaaWcbaGaam4CaaaaaOqaaiabgkDiEdqaaiaaigdacqGHLjYSdaWcaaqaaiaaigdaaeaadaGcbaqaaiaad6gaaSqaaiaadohaaaaaaOGaeyyzIm7aaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbGaey4kaSIaaGymaaWcbaGaam4CaaaaaaGccqGHLjYScaaIWaaaaaaa@59D9@

( 1 n s ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaGymaaqaamaakeaabaGaamOBaaWcbaGaam4CaaaaaaGccaGGPaaaaa@399D@ ist also monoton fallend und beschränkt, somit konvergent, etwa gegen g. Zur Ermittlung von g nutzen wir den dritten Grenzwertsatz:

1 n = ( 1 n s ) s g s g s =0g=0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBaaaacqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiaacMcadaahaaWcbeqaaiaadohaaaGccqGHsgIRcaWGNbWaaWbaaSqabeaacaWGZbaaaOGaeyO0H4Taam4zamaaCaaaleqabaGaam4Caaaakiabg2da9iaaicdacqGHshI3caWGNbGaeyypa0JaaGimaaaa@4CD9@
2.  

Wir setzen wieder den dritten Grenzwertsatz ein und benutzen das Ergebnis aus 1.:

1 n q = 1 n r s = ( 1 n s ) r 0 r =0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOBamaaCaaaleqabaGaamyCaaaaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbWaaWbaaSqabeaadaWcaaqaaiaadkhaaeaacaWGZbaaaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaaIXaaabaWaaOqaaeaacaWGUbaaleaacaWGZbaaaaaakiaacMcadaahaaWcbeqaaiaadkhaaaGccqGHsgIRcaaIWaWaaWbaaSqabeaacaWGYbaaaOGaeyypa0JaaGimaaaa@494B@

Das nächsten Beispiel ist klassisch. Es führt uns zu einer der wichtigsten mathematischen Konstanten, der sog. Eulerschen Zahl.

Beispiel:  

  • ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ und  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ sind konvergent.
[5.7.6]

Beweis:  Beide Konvergenzaussagen lassen sich am besten gleichzeitig beweisen. Wir zeigen in drei Schritten dass beide Folgen monoton und beschränkt sind:
1.  

( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ ist monoton wachsend, denn mit der Bernoullischen Ungleichung erhalten wir für n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@ zunächst

(1+ 1 n+1 ) n+1 (1 1 n+1 ) n+1 = (1 1 (n+1) 2 ) n+1 1 1 n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixlaacIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaGGOaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaaaOGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHLjYScaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaaaaa@5D2C@

und daraus:

(1+ 1 n+1 ) n+1 1 (1 1 n+1 ) n = ( n+1 n ) n = (1+ 1 n ) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZoaalaaabaGaaGymaaqaaiaacIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaaaaaaGccqGH9aqpcaGGOaWaaSaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gaaaGaaiykamaaCaaaleqabaGaamOBaaaakiabg2da9iaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaaaa@568E@ .
 
2.  

( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ ist monoton fallend: Wir setzen noch einmal die Bernoullische Ungleichung ein und erhalten für n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3A68@

( (n+1) 2 (n+1) 2 1 ) n+1 = (1+ 1 (n+1) 2 1 ) n+1 (1+ 1 (n+1) 2 ) n+1 1+ 1 n+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyypa0JaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZkaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwMiZkaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaaaaa@66F3@

Damit können wir jetzt folgendermaßen abschätzen:

(1+ 1 n+1 ) n+2 ( (n+1) 2 (n+1) 2 1 ) n+1 (1+ 1 n+1 ) n+1 = ( (n+1) 2 (n+2)n n+2 n+1 ) n+1 = ( n+1 n ) n+1 = (1+ 1 n ) n+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbGaey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGOmaaaaaOqaaiabgsMiJkaacIcadaWcaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixlaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaiabgUcaRiaaigdaaaGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaakeaaaeaacqGH9aqpcaGGOaWaaSaaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaiikaiaad6gacqGHRaWkcaaIYaGaaiykaiaad6gaaaGaeyyXIC9aaSaaaeaacaWGUbGaey4kaSIaaGOmaaqaaiaad6gacqGHRaWkcaaIXaaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0JaaiikamaalaaabaGaamOBaiabgUcaRiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0JaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaaaaa@82D8@
 
3.  

( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ und  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ sind beschränkt, denn da (1+ 1 1 ) 1 =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaaaaiaacMcadaahaaWcbeqaaiaaigdaaaGccqGH9aqpcaaIYaaaaa@3C99@ und (1+ 1 1 ) 2 =4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIXaaaaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaI0aaaaa@3C9C@ folgt aus dem gerade gezeigten Monotonieverhalten:

2 (1+ 1 n ) n (1+ 1 n ) n+1 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyizImQaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizImQaaGinaaaa@495B@ .

Beachte:

  • Da (1+ 1 n ) n+1 (1+ 1 n ) n = (1+ 1 n ) n 1 n 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyOeI0IaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaGGOaGaaGymaiabgUcaRmaalaaabaGaaGymaaqaaiaad6gaaaGaaiykamaaCaaaleqabaGaamOBaaaakiabgwSixpaalaaabaGaaGymaaqaaiaad6gaaaGaeyOKH4QaaGimaaaa@5142@ besitzen ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ und  ( (1+ 1 n ) n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacMcaaaa@3E3D@ über [5.7.6] hinaus sogar denselben Grenzwert! Die Zahl

    elim (1+ 1 n ) n =lim (1+ 1 n ) n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabg2da9iGacYgacaGGPbGaaiyBaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyypa0JaciiBaiaacMgacaGGTbGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaa@4B4E@

    [5.7.7]

    heißt die Eulersche Zahl. Wir werden ihr noch oft begegnen und neben [5.7.7] weitere Berechnungsmöglichkeiten finden. Leonhard Euler selbst berechnet in seinem 1748 veröffentlichten Werk Introductio in Analysin infinitorum bereits die ersten 18 Stellen der Eulerschen Zahl: 

    e = 2.718281828459045235....

    Dabei hat Euler bei seiner Berechnung sicherlich nicht die Darstellung in [5.7.7] benutzt, denn wie man im folgenden Applet selbst ausprobieren kann, konvergiert z.B. die Folge ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ äußerst langsam. So sichert etwa

    (Das Applet arbeitet mit sog. constructive real numbers und kann theoretisch Zahlen mit beliebig vielen Dezimalstellen darstellen. Die Voreinstellung von 100 Stellen läßt sich zwar hier auf
    z.B.   ,
    man beachte aber, dass die benutzte Rechnerkonfiguration Grenzen setzt. Bei mehr als 3000 Nachkommastellen dürften sich erste Probleme einstellen!)

    Im übernächsten Abschnitt geben wir eine Folge an, die deutlich schneller gegen e konvergiert. Mit ihrer Hilfe gelingt auch der Nachweis, dass die Eulersche Zahl irrational ist.


     

Über die Beschränktheit von ( (1+ 1 n ) n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaaiykaaaa@3CA0@ , etwa nach oben durch 4, gewinnen wir die Konvergenz einer weiteren, nicht elementaren Folge.

Beispiel:  

  • n n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyOKH4QaaGymaaaa@3A1C@
[5.7.8]

Beweis:  Da (1+ 1 n ) n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMcadaahaaWcbeqaaiaad6gaaaGccqGHKjYOcaaI0aaaaa@3DBA@ , gilt für alle n4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaisdaaaa@38E0@ der Reihe nach:

(1+ 1 n ) n n n+1n n n = n n+1 n n+1 n+1 n n . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaaqaaiaacIcacaaIXaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaaaacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyizImQaamOBaaqaaiaad6gacqGHRaWkcaaIXaGaeyizImQaamOBaiabgwSixpaakeaabaGaamOBaaWcbaGaamOBaaaakiabg2da9maakeaabaGaamOBamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaabaGaamOBaaaaaOqaamaakeaabaGaamOBaiabgUcaRiaaigdaaSqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyizIm6aaOqaaeaacaWGUbaaleaacaWGUbaaaaaaaaa@5649@

( n n ) n4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaakeaabaGaamOBaaWcbaGaamOBaaaakiaacMcadaWgaaWcbaGaamOBaiabgwMiZkaaisdaaeqaaaaa@3C70@ ist also monoton fallend und wegen 1 n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJoaakeaabaGaamOBaaWcbaGaamOBaaaaaaa@39DA@ auch beschränkt, und somit konvergent etwa gegen g1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgwMiZkaaigdaaaa@38D6@ . Dabei können wir den Fall g>1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg6da+iaaigdaaaa@3818@ ausschließen, denn da MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@36D9@ archimedisch geordnet ist, finden wir zu jedem x>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg6da+iaaicdaaaa@3828@ ein n 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaeyyzImRaaGinaaaaaaa@3BFD@ , so dass 1<(n1) x 2 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgYda8iaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacqGHflY1daWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaaa@4022@ . Das allgemeine Binomialtheorem [5.2.5] ermöglicht nun für dieses n die folgende Abschätzung:

n<n(n1) x 2 2 =(T n 2 )T 1 n2 x 2 i=0 n (T n i )T 1 ni x i = (1+x) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgYda8iaad6gacqGHflY1caGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaeyyXIC9aaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGH9aqpcaGGOaqbaeqabiqaaaqaaiaad6gaaeaacaaIYaaaaiaacMcacaaIXaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaakiabgwSixlaadIhadaahaaWcbeqaaiaaikdaaaGccqGHKjYOdaaeWbqaaiaacIcafaqabeGabaaabaGaamOBaaqaaiaadMgaaaGaaiykaiaaigdadaahaaWcbeqaaiaad6gacqGHsislcaWGPbaaaOGaeyyXICTaamiEamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaacIcacaaIXaGaey4kaSIaamiEaiaacMcadaahaaWcbeqaaiaad6gaaaaaaa@6893@ .

Also hat man n n <1+x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyipaWJaaGymaiabgUcaRiaadIhaaaa@3B12@ , und damit 1+xg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgUcaRiaadIhacqGHGjsUcaWGNbaaaa@3AB6@ , denn man weiß, dass n n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGUbaaleaacaWGUbaaaOGaeyyzImRaam4zaaaa@3A26@ ist.

Die Konvergenz von ( n n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaakeaabaGaamOBaaWcbaGaamOBaaaakiaacMcaaaa@38CD@ zieht weitere Konvergenzen nach sich. Für 1an MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadggacqGHKjYOcaWGUbaaaa@3B67@ hat man 1 a n n n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJoaakeaabaGaamyyaaWcbaGaamOBaaaakiabgsMiJoaakeaabaGaamOBaaWcbaGaamOBaaaaaaa@3D8D@ , so dass aus dem Schachtelsatz [5.5.8] folgt

a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGHbaaleaacaWGUbaaaOGaeyOKH4QaaGymaaaa@3A0F@
[5.7.9]

Dies gilt dann auch für 0<a<1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgYda8iaadggacqGH8aapcaaIXaaaaa@39CC@ a n = 1 1 a n 1 1 =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWGHbaaleaacaWGUbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOqaaeaadaWcaaqaaiaaigdaaeaacaWGHbaaaaWcbaGaamOBaaaaaaGccqGHsgIRdaWcaaqaaiaaigdaaeaacaaIXaaaaiabg2da9iaaigdaaaa@4135@ .
 

Mit weiteren Beispielen zeigen wir die Bedeutung des Kriteriums "monoton und konvergent" für die Untersuchung rekursiver Folgen auf.

Beispiel:  

  • Für die durch  a 1 2 a n+1 2 a n a n +1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacqGHNis2caWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaaGymaaaaaaa@45E9@   rekursiv gegebene Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ gilt:  a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkziUkaaigdaaaa@3A20@ .

Beweis:  Wir zeigen zunächst per Induktion, und damit ist ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ bereits beschränkt,
 

1 a n 2  für alle  n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaaGOmaiaabAgacaqG8dGaaeOCaiaabccacaqGHbGaaeiBaiaabYgacaqGLbGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@4D64@

►   122, also:  1 a 1 2. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaaIYaGaeyizImQaaGOmaiaabYcacaqGGaGaaeyyaiaabYgacaqGZbGaae4BaiaabQdacaaIXaGaeyizImQaamyyamaaBaaaleaacaaIXaaabeaakiabgsMiJkaaikdaaaa@4BEA@

►   Aus 1 a n 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadggadaWgaaWcbaGaamOBaaqabaGccqGHKjYOcaaIYaaaaa@3F78@ erhält man die Abschätzung

1= 2 a n a n + a n 2 a n a n +1 22 1+1 =2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGH9aqpdaWcaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaeyizIm6aaSaaaeaacaaIYaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaaIXaaaaiabgsMiJoaalaaabaGaaGOmaiabgwSixlaaikdaaeaacaaIXaGaey4kaSIaaGymaaaacqGH9aqpcaaIYaaaaa@5544@

und hat damit  1 a n+1 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laaigdacqGHKjYOcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabgsMiJkaaikdaaaa@4258@ .

Ferner ist ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ monoton fallend, denn mit a n 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaaIXaaaaa@3E5B@ hat man auch a n ( a n 1)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaigdacaGGPaGaeyyzImRaaGimaaaa@436A@ , so dass mit der folgenden Äquivalenz die Behauptung bewiesen ist:

a n a n+1 a n 2 a n a n +1 a n 2 + a n 2 a n a n 2 a n 0 a n ( a n 1)0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqafiaaaaqaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiabgsDiBdqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYSdaWcaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaaigdaaaaabaGaeyi1HSnabaGaamyyamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaamOBaaqabaGccqGHLjYScaaIYaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiabgsDiBdqaaiaadggadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyyzImRaaGimaaqaaiabgsDiBdqaaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaigdacaGGPaGaeyyzImRaaGimaaaaaaa@7165@

Insgesamt ist daher ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ konvergent, etwa gegen g[1,2] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHiiIZcaGGBbGaaGymaiaacYcacaaIYaGaaiyxaaaa@4022@ . g ist aber auch Grenzwert von ( a n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaaiykaaaa@3AEE@ , so dass wir g auch mit Hilfe der Grenzwertsätze berechnen können:

g a n+1 = 2 a n a n +1 2g g+1 . MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHqgcRcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaaGymaaaacqGHsgIRdaWcaaqaaiaaikdacaWGNbaabaGaam4zaiabgUcaRiaaigdaaaaaaa@4E07@

Grenzwerte sind eindeutig, also hat man die Gleichung  g= 2g g+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGH9aqpdaWcaaqaaiaaikdacaWGNbaabaGaam4zaiabgUcaRiaaigdaaaaaaa@3FFE@   und damit (beachte g[1,2] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHiiIZcaGGBbGaaGymaiaacYcacaaIYaGaaiyxaaaa@4022@ ):

g 2 +g=2gg(g1)=0g=1. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGNbGaeyypa0JaaGOmaiaadEgacqGHuhY2caWGNbGaaiikaiaadEgacqGHsislcaaIXaGaaiykaiabg2da9iaaicdacqGHuhY2caWGNbGaeyypa0JaaGymaaaa@4E24@

Das letzte Beispiel ist ein sehr nützliches Hilfsmittel zur approximativen Berechnung von Quadratwurzeln. Wie der Name verrät, ist dies ein sehr altes Verfahren.

Bemerkung (Babylonisches Wurzelziehen):  Ist a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggacqGH+aGpcaaIWaaaaa@3C73@ , so ist für jeden Startwert a 1 >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcaaIWaaaaa@3D64@ die durch die Rekursion  a n+1 1 2 ( a n + a a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaaaa@4753@   gegebene Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ konvergent, genauer:

a n a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRdaGcaaqaaiaadggaaSqabaaaaa@3EC8@
[5.7.10]

Beweis:  Zunächst vergewissern wir uns durch eine induktive Überlegung, dass a n >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGH+aGpcaaIWaaaaa@3D9C@ für alle n. Da Quadrate stets positiv sind, liefert uns der Schluss
 

0 ( a n a a n ) 2 = a n 2 a + a a n 2 a a n + a a n a 1 2 ( a n + a a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqadiaaaeaaaeaacaaIWaGaeyizImQaaiikamaakaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaeqaaOGaeyOeI0YaaOaaaeaadaWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaaIYaWaaOaaaeaacaWGHbaaleqaaOGaey4kaSYaaSaaaeaacaWGHbaabaGaamyyamaaBaaaleaacaWGUbaabeaaaaaakeaacqGHshI3aeaacaaIYaWaaOaaaeaacaWGHbaaleqaaOGaeyizImQaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaaGcbaGaeyO0H4nabaWaaOaaaeaacaWGHbaaleqaaOGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRmaalaaabaGaamyyaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaaaOGaaiykaaaaaaa@682B@

die Abschätzung a n+1 a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyyzIm7aaOaaaeaacaWGHbaaleqaaaaa@403E@ . Für alle n2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laad6gacqGHLjYScaaIYaaaaa@3D40@ gilt daher:

a n a n+1   = a n a n 2 a 2 a n = a n 2 a 2 a n a 2 a 2 a = a 2 a 2 =0. MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=xaabaqaeiaaaaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaamOBaaqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaamyyaaqaaiaaikdacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaaaOqaaaqaaiabg2da9maalaaabaGaamyyamaaBaaaleaacaWGUbaabeaaaOqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaWGHbaabaGaaGOmaiaadggadaWgaaWcbaGaamOBaaqabaaaaaGcbaaabaGaeyyzIm7aaSaaaeaadaGcaaqaaiaadggaaSqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaamyyaaqaaiaaikdadaGcaaqaaiaadggaaSqabaaaaaGcbaaabaGaeyypa0ZaaSaaaeaadaGcaaqaaiaadggaaSqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaWaaOaaaeaacaWGHbaaleqaaaGcbaGaaGOmaaaacqGH9aqpcaaIWaaaaaaa@634A@

Also ist ( a n+1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laacIcacaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaacMcaaaa@3ED0@ monoton fallend und wegen  a a n+1 a 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paakaaabaGaamyyaaWcbeaakiabgsMiJkaadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyizImQaamyyamaaBaaaleaacaaIYaaabeaaaaa@43BA@   auch beschränkt, insgesamt daher konvergent, etwa gegen g a >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHLjYSdaGcaaqaaiaadggaaSqabaGccqGH+aGpcaaIWaaaaa@3F4A@ . Da auch a n g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGHsgIRcaWGNbaaaa@3EB3@ können wir zur Ermittlung von g wieder unseren "Standardtrick" einsetzen: Aus

g a n+1 = 1 2 ( a n + a a n ) g0 1 2 (g+ a g ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGHqgcRcaWGHbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkdaWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiaacMcadaWfqaqaaiabgkziUcWcbaGaam4zaiabgcMi5kaaicdaaeqaaOWaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGOaGaam4zaiabgUcaRmaalaaabaGaamyyaaqaaiaadEgaaaGaaiykaaaa@5655@

erhalten wir dabei  g= 1 2 (g+ a g )2g=g+ a g g 2 =ag= a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadEgacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaWGNbGaey4kaSYaaSaaaeaacaWGHbaabaGaam4zaaaacaGGPaGaeyi1HSTaaGOmaiaadEgacqGH9aqpcaWGNbGaey4kaSYaaSaaaeaacaWGHbaabaGaam4zaaaacqGHuhY2caWGNbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamyyaiabgsDiBlaadEgacqGH9aqpdaGcaaqaaiaadggaaSqabaaaaa@567D@ .

Beachte:

  • Das Grundprinzip des Babylonischen Wurzelziehens ist einfach und genial zugleich. Die Äquivalenz

    a n < a a a n > a a = a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaGccqGH8aapdaGcaaqaaiaadggaaSqabaGccqGHuhY2daWcaaqaaiaadggaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaaaakiabg6da+maalaaabaGaamyyaaqaamaakaaabaGaamyyaaWcbeaaaaGccqGH9aqpdaGcaaqaaiaadggaaSqabaaaaa@485A@

    lesen wir so: Ist a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaaqabaaaaa@3BD0@ zu klein (zu groß), so ist a a n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paalaaabqaq=laadggaaeaba9VaamyyamaaBaaaleaacaWGUbaabeaaaaaaaa@3F4C@ zu groß (zu klein). In jedem Fall ist daher das arithmetische Mittel a n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=laadggadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaaaa@3D6D@ ein vermutlich besser Approximationswert.
     

  • Ist a rational, so zeigt ein einfacher Induktionsbeweis, dass ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ eine Folge in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ ist. Insbesondere hat man also:

    Es gibt eine monotone und beschränkte Folge ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ , die gegen die irrationale Zahl 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=paakaaabqaq=laaikdaaSqabaaaaa@3BE5@ konvergiert.

    [5.7.11]

    Da ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ nur einen Limes besitzen kann, ist ( a n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadggadaWgaaWcbaGaamOBaaqabaGccaGGPaaaaa@3951@ in MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepe0xh9as0=LqLs=Jarpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbqaq=lablQriKcaa@3B3B@ divergent!
     

  • Das Babylonische Wurzelziehen ist ein recht schnelles Approximationsverfahren. Selbst bei ungüstigen Startwerten reichen oft nur wenige Schritte, um bereits die ersten zehn Dezimalstellen zu sichern. Wir zeigen dies am Beispiel der Wurzel aus . Dazu wählen wir den Anfangswert a 1 = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaaabeaakiabg2da9aaa@3846@  , legen die Anzahl der Iterationsschritte auf fest und starten dann die Iteration:

    n= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9aaa@3762@   a n = MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg2da9aaa@387E@  


5.6. 5.8.