8.10. Das Faltungsprodukt


In diesem Abschnitt nutzen wir das Integral zur Konstruktion einer interessanten und für die Analysis hilfreichen Verrechnungsart von (stetigen) Funktionen, das sogenannte Faltungsprodukt.

Mit Hilfe des Faltungsprodukts finden wir am Ende dieses Abschnitts einen günstigen, zu [7.9.16] alternativen Zugang zur Taylorformel. Auch der nachfolgende Abschnitt über Differentialgleichungen profitiert von diesem Produkt.

Im Folgenden notieren wir die Hintereinanderausführung meist in ihrer abgekürzten Form, wir schreiben also z.B. f(xX) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcaaaa@3AF4@ statt f(xX) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaacIcacaWG4bGaeyOeI0IaamiwaiaacMcaaaa@3C2E@ . Ferner beachte man, dass die in diesem Abschnitt betrachteten differenzierbaren Funktionen stets stetig differenzierbar, also Funktionen aus C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@3AA4@

 i

Mit dem Symbol C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@3AA4@ haben wir in [7.8.1] die Menge aller n-mal stetig differenzierbaren Funktionen f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ bezeichnet. Dies sind n-mal differenzierbare Funktionen, deren n-te Ableitung f (n) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaaaa@394D@ stetig ist. Siehe dazu auch [7.8.9].

sind.

Definition:  Sind f und g zwei stetige Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ , also f,g C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGimaaaakiaacIcacqWIDesOcaGGPaaaaa@3E76@ , so heißt die Funktion fg: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacaGG6aGaeSyhHeQaeyOKH4QaeSyhHekaaa@3E3A@ gegeben durch

fg(x) 0 x f(xX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipaaaa@486C@
[8.10.1]

das Faltungsprodukt von f und g.

Man beachte, dass das angegebene Integral gemäß [8.1.5] wohldefiniert ist, denn der Integrand ist nach Voraussetzung stetig (siehe dazu [6.3.8,10]).

Die folgenden Beispiele erläutern den neuen Begriff. Dabei beachte man, dass das Argument x im Integranden stets als eine Konstante auftritt. Ferner wird man oft, bedingt durch die Gestalt des Integranden, auf die partielle Integration [8.3.1] zurückgreifen müssen.

Beispiel:  

  • X X 2 = 1 12 X 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgEHiQiaadIfadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIXaGaaGOmaaaacaWGybWaaWbaaSqabeaacaaI0aaaaaaa@3E95@ , denn für alle x ist

    X X 2 (x)= 0 x (xX) X 2 =x 0 x X 2 0 x X 3 =x 1 3 x 3 1 x x 4 = 1 12 x 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaaqaaiaadIfacqGHxiIkcaWGybWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadIhacaGGPaGaeyypa0Zaa8qCaeaacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaamiwamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyypa0JaamiEamaapehabaGaamiwamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGybWaaWbaaSqabeaacaaIZaaaaaqaaiaaicdaaeaacaWG4baaniabgUIiYdGccqGH9aqpcaWG4bGaeyyXIC9aaSaaaeaacaaIXaaabaGaaG4maaaacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiEaaaacaWG4bWaaWbaaSqabeaacaaI0aaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaGaamiEamaaCaaaleqabaGaaGinaaaaaaaaaa@6992@

  • e 2X e 3X =? e 3X e 2X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaGccqGHxiIkcaWGLbWaaWbaaSqabeaacaaIZaGaamiwaaaakiabg2da9iaadwgadaahaaWcbeqaaiaaiodacaWGybaaaOGaeyOeI0IaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaaaaa@43AB@ , denn für ein beliebiges x hat man:

    0 x e 2X e 3X =? 0 x e 2(xX) e 3X = ? 0 x e 2(xX) e 3X = e 2x 0 x e 2X+3X = e 2x e X | 0 x = e 2x ( e x 1)= e 3x e 2x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaaGOmaiaadIfaaaGccqGHxiIkcaWGLbWaaWbaaSqabeaacaaIZaGaamiwaaaakiabg2da9maapehabaGaamyzamaaCaaaleqabaGaaGOmaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcaaaGccqGHflY1caWGLbWaaWbaaSqabeaacaaIZaGaamiwaaaaaeaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyypa0JaamyzamaaCaaaleqabaGaaGOmaiaadIhaaaGcdaWdXbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWGybGaey4kaSIaaG4maiaadIfaaaaabaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaadwgadaahaaWcbeqaaiaaikdacaWG4baaaOGaeyyXICTaamyzamaaCaaaleqabaGaamiwaaaakiaacYhadaqhaaWcbaGaaGimaaqaaiaadIhaaaGccqGH9aqpcaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaakiabgwSixlaacIcacaWGLbWaaWbaaSqabeaacaWG4baaaOGaeyOeI0IaaGymaiaacMcacqGH9aqpcaWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaakiabgkHiTiaadwgadaahaaWcbeqaaiaaikdacaWG4baaaaaa@787F@

  • X 2 sin= X 2 +2cos2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgEHiQiGacohacaGGPbGaaiOBaiabg2da9iaadIfadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaci4yaiaac+gacaGGZbGaeyOeI0IaaGOmaaaa@4470@ , denn für alle x errechnen wir mittels partieller Integration:

    X 2 sin(x) = 0 x (xX) 2 sin = (xX) 2 cos | 0 x 2 0 x (xX)cos = x 2 2((xX)sin | 0 x + 0 x sin ) = x 2 +2cos | 0 x = x 2 +2cosx2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaamiwamaaCaaaleqabaGaaGOmaaaakiabgEHiQiGacohacaGGPbGaaiOBaiaacIcacaWG4bGaaiykaaqaaiabg2da9maapehabaGaaiikaiaadIhacqGHsislcaWGybGaaiykamaaCaaaleqabaGaaGOmaaaakiabgwSixlGacohacaGGPbGaaiOBaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaaqaaiabg2da9iabgkHiTiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHflY1ciGGJbGaai4BaiaacohacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaeyOeI0IaaGOmamaapehabaGaaiikaiaadIhacqGHsislcaWGybGaaiykaiabgwSixlGacogacaGGVbGaai4CaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaaqaaiabg2da9iaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaaiikaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1ciGGZbGaaiyAaiaac6gacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaey4kaSYaa8qCaeaaciGGZbGaaiyAaiaac6gaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaGGPaaabaaabaGaeyypa0JaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaciGGJbGaai4BaiaacohacaGG8bWaa0baaSqaaiaaicdaaeaacaWG4baaaOGaeyypa0JaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaciGGJbGaai4BaiaacohacaWG4bGaeyOeI0IaaGOmaaaaaaa@99DF@

In der folgenden Bemerkung stellen wir nun die elementaren Rechenregeln für das Faltungsprodukt zusammen.

Bemerkung:  Für alle f,g,h C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaaiilaiaadIgacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIWaaaaOGaaiikaiabl2riHkaacMcaaaa@4013@ und c MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolabl2riHcaa@39C5@ ist

1.    fg(0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacaGGOaGaaGimaiaacMcacqGH9aqpcaaIWaaaaa@3C82@

[8.10.2]

2.    0g=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgEHiQiaadEgacqGH9aqpcaaIWaaaaa@3A3E@

[8.10.3]

3.    fg=gf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacqGH9aqpcaWGNbGaey4fIOIaamOzaaaa@3C7B@

[8.10.4]

4.    (cf)g=c(gf) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacqGHflY1caWGMbGaaiykaiabgEHiQiaadEgacqGH9aqpcaWGJbGaeyyXICTaaiikaiaadEgacqGHxiIkcaWGMbGaaiykaaaa@4591@

[8.10.5]

5.    (f+g)h=fh+gh MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykaiabgEHiQiaadIgacqGH9aqpcaWGMbGaey4fIOIaamiAaiabgUcaRiaadEgacqGHxiIkcaWGObaaaa@434E@

[8.10.6]

Beweis:  

1.    fg(0)= 0 0 f(0X)g =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacaGGOaGaaGimaiaacMcacqGH9aqpdaWdXbqaaiaadAgacaGGOaGaaGimaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaaicdaa0Gaey4kIipakiabg2da9iaaicdaaaa@496D@ .

2.   Für ein beliebiges x ist 0g(x)= 0 x 0(xX)g = 0 x 0 =0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgEHiQiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaaicdacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9maapehabaGaaGimaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaaicdaaaa@4FBE@ .

3.   Wir wenden die Substitutionsregel [8.3.5] von rechts nach links an. Für ein festes x ergibt sich dann mit gxX MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2da9iaadIhacqGHsislcaWGybaaaa@3AA2@ (beachte dabei:  f(X)=fX=f MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWGybGaaiykaiabg2da9iaadAgacqWIyiYBcaWGybGaeyypa0JaamOzaaaa@3F03@ )

fg(x)= 0 x f(xX)g = x 0 f(x(xX))g(xX) = 0 x g(xX)f =gf(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9iabgkHiTmaapehabaGaamOzaiaacIcacaWG4bGaeyOeI0IaaiikaiaadIhacqGHsislcaWGybGaaiykaiaacMcacqGHflY1caWGNbGaaiikaiaadIhacqGHsislcaWGybGaaiykaaWcbaGaamiEaaqaaiaaicdaa0Gaey4kIipakiabg2da9maapehabaGaam4zaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGMbaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyypa0Jaam4zaiabgEHiQiaadAgacaGGOaGaamiEaiaacMcaaaa@71CA@ .

4.   Für jedes x ist

(cf)g(x)= 0 x (cf)(xX)g = 0 x cf(xX)g =c 0 x f(xX)g =c(fg)(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadogacqGHflY1caWGMbGaaiykaiabgEHiQiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaacIcacaWGJbGaeyyXICTaamOzaiaacMcacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9maapehabaGaam4yaiabgwSixlaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaadogadaWdXbqaaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaadogacqGHflY1caGGOaGaamOzaiabgEHiQiaadEgacaGGPaGaaiikaiaadIhacaGGPaaaaa@7B35@ .

5.   Die Komposition MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3723@ ist bezüglich + rechtsdistributiv. Für ein beliebiges x hat man daher

(f+g)h(x) = 0 x (f+g)(xX)h = 0 x (f(xX)+g(xX)) h = 0 x f(xX)h + 0 x g(xX)h =fh(x)+gh(x)=(fh+gh)(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiikaiaadAgacqGHRaWkcaWGNbGaaiykaiabgEHiQiaadIgacaGGOaGaamiEaiaacMcaaeaacqGH9aqpdaWdXbqaaiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaamiAaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipaaOqaaaqaaiabg2da9maapehabaGaaiikaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaey4kaSIaam4zaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacaGGPaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyyXICTaamiAaaqaaaqaaiabg2da9maapehabaGaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGObaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaey4kaSYaa8qCaeaacaWGNbGaaiikaiaadIhacqGHsislcaWGybGaaiykaiabgwSixlaadIgaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdaakeaaaeaacqGH9aqpcaWGMbGaey4fIOIaamiAaiaacIcacaWG4bGaaiykaiabgUcaRiaadEgacqGHxiIkcaWGObGaaiikaiaadIhacaGGPaGaeyypa0JaaiikaiaadAgacqGHxiIkcaWGObGaey4kaSIaam4zaiabgEHiQiaadIgacaGGPaGaaiikaiaadIhacaGGPaaaaaaa@959E@

Beachte:

  • Mit [8.10.4] wissen wir, dass das Faltungsprodukt kommutativ ist. Das Distributivgesetz in [8.10.6] gilt daher auch in der Form h(f+g)=hf+hg MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgEHiQiaacIcacaWGMbGaey4kaSIaam4zaiaacMcacqGH9aqpcaWGObGaey4fIOIaamOzaiabgUcaRiaadIgacqGHxiIkcaWGNbaaaa@434E@ .

  • Das Distributivgesetz läßt sich auf die Subtraktion, die Multiplikation und die Division übertragen, denn MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSigI8gaaa@3723@ verhält sich auch zu diesen Operationen rechtsdistributiv. In diesem Zusammenhang vereinbaren wir zur Einsparung von Klammern, dass MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOcaaa@36D8@ stärker bindet als die Grundrechenarten.

  • [8.10.5,6] fasst man zusammen zu: "Das Faltungsprodukt ist linear in der ersten Koordinate". Mit der Kommutativität gilt dies natürlich auch für die zweite, MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4fIOcaaa@36D8@ ist also bilinear.


     

Wir wenden uns nun den analytischen Qualitäten des Faltungsprodukts zu. Vorab betrachten wir den reduzierten Fall f=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaaigdaaaa@3895@ . Punkt 1. der folgenden Bemerkung ist eine andere Fassung des Hauptsatzes [8.2.13]!

Bemerkung:  

1.    g C 0 ()1g C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaiaaywW7cqGHshI3caaMf8UaaGymaiabgEHiQiaadEgacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIXaaaaOGaaiikaiabl2riHkaacMcaaaa@4AF1@  und  (1g ) =g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdacqGHxiIkcaWGNbGabiykayaafaGaeyypa0Jaam4zaaaa@3BD6@

[8.10.7]

2.    1 g =gg(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiqadEgagaqbaiabg2da9iaadEgacqGHsislcaWGNbGaaiikaiaaicdacaGGPaaaaa@3E69@  für alle  g C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDC@

[8.10.8]

Beweis:

1.   Zunächst hat man für jedes x 1g(x)= 0 x 1(xX)g = 0 x 1g = 0 x g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaaigdacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabg2da9maapehabaGaaGymaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccqGH9aqpdaWdXbqaaiaadEgaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdaaaa@5749@ . Gemäß [8.2.13] ist daher 1g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiaadEgaaaa@387F@ eine Stammfunktion zu g. Insbesondere also ist 1g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiaadEgaaaa@387F@ differenzierbar, und mit der stetigen Ableitung g auch stetig differenzierbar.

2.   Nach der gerade geführten Rechnung ist 1 g (x)= 0 x g =g | 0 x =g(x)g(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiqadEgagaqbaiaacIcacaWG4bGaaiykaiabg2da9maapehabaGabm4zayaafaaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyypa0Jaam4zaiaacYhadaqhaaWcbaGaaGimaaqaaiaadIhaaaGccqGH9aqpcaWGNbGaaiikaiaadIhacaGGPaGaeyOeI0Iaam4zaiaacIcacaaIWaGaaiykaaaa@4E1D@ .

Wir lösen uns nun vom Spezialfall f=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9iaaigdaaaa@3895@ und verallgemeinern zunächst die Ableitungsregel [8.10.7].

Bemerkung:  Sei g C 0 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgIGiolaadoeadaahaaWcbeqaaiaaicdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDB@ und n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ . Dann gilt:

1.    f C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaGGOaGaeSyhHeQaaiykaaaa@3CDB@

fg C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGzbVlaadAgacqGHxiIkcaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@42A1@  und  (fg ) =f(0)g+ f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGabiykayaafaGaeyypa0JaamOzaiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbaaaa@4502@

[8.10.9]

2.    f C n ()       f (i) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaiaaysW7cqGHNis2caaMe8UaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@4917@  für alle i<n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgYda8iaad6gacqGHsislcaaIXaaaaa@3A76@

fg C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGzbVlaadAgacqGHxiIkcaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaamOBaaaakiaacIcacqWIDesOcaGGPaaaaa@42D9@  und  (fg) (n) = f (n1) (0)g+ f (n) g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHxiIkcaWGNbaaaa@4E1B@

[8.10.10]

Beweis:

1.   

2.   Wir führen einen Induktionsbeweis. Da der Induktionsanfang mit 1. bereits sichergestellt ist, reicht es hier, den Induktionsschluss zu ziehen. Sei also [8.10.10] für ein beliebiges n bereits gültig.

Ist jetzt ein f C n+1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiabl2riHkaacMcaaaa@3EB0@  - also f C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gaaaGccaGGOaGaeSyhHeQaaiykaaaa@3D13@ und f (n) C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@3F5E@  - gegeben, mit f (i) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaaicdacaGGPaGaeyypa0JaaGimaaaa@3D25@ für i<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgYda8iaad6gaaaa@38CE@ , so gilt nach Induktionsvoraussetzung (beachte: f (n1) (0)=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiaacIcacaaIWaGaaiykaiabg2da9iaaicdaaaa@3ED2@ )

fg C n () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacqGHiiIZcaWGdbWaaWbaaSqabeaacaWGUbaaaOGaaiikaiabl2riHkaacMcaaaa@3EEE@  und  (fg) (n) = f (n1) (0)g+ f (n) g= f (n) g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaakiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGHxiIkcaWGNbGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaey4fIOIaam4zaaaa@546A@ .

Gemäß 1. ist f (n) g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaey4fIOIaam4zaaaa@3B32@ stetig differenzierbar, also (fg) (n) C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@4292@ . Insgesamt ist daher fg C n+1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaadEgacqGHiiIZcaWGdbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@408B@ und die ( n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgUcaRiaaigdaaaa@3879@ )-te Ableitung errechnen wir, ebenfalls mit 1., zu

(fg) (n+1) =( (fg) (n) ) =( f (n) g ) = f (n) (0)g+( f (n) ) g= f (n) (0)g+ f (n+1) g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqGHxiIkcaWGNbGaaiykamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabg2da9iaacIcacaGGOaGaamOzaiabgEHiQiaadEgacaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGcceGGPaGbauaacqGH9aqpcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaey4fIOIaam4zaiqacMcagaqbaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGabiykayaafaGaey4fIOIaam4zaiabg2da9iaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaaIWaGaaiykaiabgwSixlaadEgacqGHRaWkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaey4fIOIaam4zaaaa@71BB@ .
 

Wir wenden uns nun der Ableitungsregel [8.10.8] zu. In ihrer Erweiterung auf ein beliebiges f sehen wir ein Äquivalent zur partiellen Integration [8.3.1].

Bemerkung:  Für f,g C 1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacYcacaWGNbGaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaacIcacqWIDesOcaGGPaaaaa@3E77@ hat man

f g =f(0)gg(0)f+ f g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiqadEgagaqbaiabg2da9iaadAgacaGGOaGaaGimaiaacMcacqGHflY1caWGNbGaeyOeI0Iaam4zaiaacIcacaaIWaGaaiykaiabgwSixlaadAgacqGHRaWkceWGMbGbauaacqGHxiIkcaWGNbaaaa@4ACA@
[8.10.11]

Beweis:  Wir zeigen, dass die beiden Funktionen in jedem Punkt x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DA@ übereinstimmen. Wegen [8.10.2] ist dabei für x=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaaicdaaaa@38A6@ nichts zu zeigen. Ist x0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgcMi5kaaicdaaaa@3967@ , so können wir partiell integrieren:

f g (x)= 0 x f(xX)g =f(xX)g | 0 x + 0 x f (xX)g =f(0)g(x)f(x)g(0)+ f g(x) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiqadEgagaqbaiaacIcacaWG4bGaaiykaiabg2da9maapehabaGaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbaaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeyypa0JaamOzaiaacIcacaWG4bGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbGaaiiFamaaDaaaleaacaaIWaaabaGaamiEaaaakiabgUcaRmaapehabaGabmOzayaafaGaaiikaiaadIhacqGHsislcaWGybGaaiykaiabgwSixlaadEgaaSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccqGH9aqpcaWGMbGaaiikaiaaicdacaGGPaGaeyyXICTaam4zaiaacIcacaWG4bGaaiykaiabgkHiTiaadAgacaGGOaGaamiEaiaacMcacqGHflY1caWGNbGaaiikaiaaicdacaGGPaGaey4kaSIabmOzayaafaGaey4fIOIaam4zaiaacIcacaWG4bGaaiykaaaa@7B21@ .

Mit [8.10.11] können wir nun den im Eingangstext angekündigten alternativen Zugang zur Taylorformel [7.9.16] realisieren. In dieser Version der Taylorformel berücksichtigen wir nur C n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@396E@ -Funktionen auf ganz MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ und notieren sie zunächst nur für den Entwicklungspunkt 0.

Bemerkung (Satz von Taylor):  Sei n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ . Jede Funktion f C n+1 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiabl2riHkaacMcaaaa@3EB0@ erfüllt die Taylorformel

f= i=0 n f (i) (0) i! X i + 1 n! X n f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaaGimaiaacMcaaeaacaWGPbGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaiaacgcaaaGaamiwamaaCaaaleqabaGaamOBaaaakiabgEHiQiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaa@520F@
[8.10.12]

Beweis:  Es reicht offensichtlich, für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLcaa@39CC@ die Folgerung

f C n+1 () X n f (n+1) =n!(f i=0 n f (i) (0) i! X i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiabl2riHkaacMcacaaMf8UaeyO0H4TaaGzbVlaadIfadaahaaWcbeqaaiaad6gaaaGccqGHxiIkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaeyypa0JaamOBaiaacgcacaGGOaGaamOzaiabgkHiTmaaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaaGimaiaacMcaaeaacaWGPbGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiykaaaa@60F2@ [1]

nachzuweisen. Wir führen dazu einen Induktionsbeweis:

  • Ist n=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdaaaa@389C@ , so hat man für eine C 1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaaGymaaaaaaa@3799@ -Funktion  f die Gleichung 1 f =ff(0) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgEHiQiqadAgagaqbaiabg2da9iaadAgacqGHsislcaWGMbGaaiikaiaaicdacaGGPaaaaa@3E66@ nachzuweisen. Dies ist aber mit [8.10.8] bereits erledigt.

  • Sei nun die Aussage [1] für ein n bereits gültig. Dann gilt für ein beliebiges f C n+2 () MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgIGiolaadoeadaahaaWcbeqaaiaad6gacqGHRaWkcaaIYaaaaOGaaiikaiabl2riHkaacMcaaaa@3EB1@ mit [8.10.11] und der Induktionsvoraussetzung:

    X n+1 f (n+2) = X n+1 ( f (n+1) ) = X n+1 (0) f (n+1) f (n+1) (0) X n+1 +(n+1) X n f (n+1) = f (n+1) (0) X n+1 +(n+1)n!(f i=0 n f (i) (0) i! X i ) =(n+1)!( f (n+1) (0) (n+1)! X n+1 +f i=0 n f (i) (0) i! X i ) =(n+1)!(f i=0 n+1 f (i) (0) i! X i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaamiwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHxiIkcaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaikdacaGGPaaaaaGcbaGaeyypa0JaamiwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHxiIkcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiqacMcagaqbaaqaaaqaaiabg2da9iaadIfadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaiikaiaaicdacaGGPaGaeyyXICTaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiabgkHiTiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGaaGimaiaacMcacqGHflY1caWGybWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgUcaRiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGHflY1caWGybWaaWbaaSqabeaacaWGUbaaaOGaey4fIOIaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaOqaaaqaaiabg2da9iabgkHiTiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcaaaGccaGGOaGaaGimaiaacMcacqGHflY1caWGybWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgUcaRiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacqGHflY1caWGUbGaaiyiaiaacIcacaWGMbGaeyOeI0YaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaaIWaGaaiykaaqaaiaadMgacaGGHaaaaiaadIfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaabaaabaGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcacaGGOaGaeyOeI0YaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaOGaaiikaiaaicdacaGGPaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaaGaamiwamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHRaWkcaWGMbGaeyOeI0YaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaaIWaGaaiykaaqaaiaadMgacaGGHaaaaiaadIfadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaabaaabaGaeyypa0Jaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcacaGGOaGaamOzaiabgkHiTmaaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaaGimaiaacMcaaeaacaWGPbGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgUcaRiaaigdaa0GaeyyeIuoakiaacMcaaaaaaa@E2E8@

Beachte:

  • Durch eine Verschiebung finden wir auch eine Formulierung der Taylorformel für einen beliebigen Entwicklungspunkt a. Denn mit (f(X+a)) (i) = f (i) (X+a) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAgacqWIyiYBcaGGOaGaamiwaiabgUcaRiaadggacaGGPaGaaiykamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaeyypa0JaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGHbGaaiykaaaa@498A@ ergibt sich aus [8.10.12] für eine C n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@396E@ -Funktion  f zunächst

    f(X+a)= i=0 n f (i) (a) i! X i + 1 n! X n ( f (n+1) (X+a)) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiablIHiVjaacIcacaWGybGaey4kaSIaamyyaiaacMcacqGH9aqpdaaeWbqaamaalaaabaGaamOzamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadggacaGGPaaabaGaamyAaiaacgcaaaGaamiwamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRmaalaaabaGaaGymaaqaaiaad6gacaGGHaaaaiaadIfadaahaaWcbeqaaiaad6gaaaGccqGHxiIkcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiablIHiVjaacIcacaWGybGaey4kaSIaamyyaiaacMcacaGGPaaaaa@5E0E@ ,

    und damit:  f= i=0 n f (i) (a) i! (Xa) i + 1 n! ( X n ( f (n+1) (X+a)))(Xa) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiwaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaiaacgcaaaGaaiikaiaadIfadaahaaWcbeqaaiaad6gaaaGccqGHxiIkcaGGOaGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiablIHiVjaacIcacaWGybGaey4kaSIaamyyaiaacMcacaGGPaGaaiykaiablIHiVjaacIcacaWGybGaeyOeI0IaamyyaiaacMcaaaa@629E@ .

    Über die Rechnung (wir setzen dabei die Substitutionsregel [8.3.5] von rechts nach links ein)

    f(g(X+a))(xa)= 0 xa f(xaX)g(X+a) = a x f(xX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQiaacIcacaWGNbGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGHbGaaiykaiaacMcacaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyypa0Zaa8qCaeaacaWGMbGaaiikaiaadIhacqGHsislcaWGHbGaeyOeI0IaamiwaiaacMcacqGHflY1caWGNbGaeSigI8MaaiikaiaadIfacqGHRaWkcaWGHbGaaiykaaWcbaGaaGimaaqaaiaadIhacqGHsislcaWGHbaaniabgUIiYdGccqGH9aqpdaWdXbqaaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipaaaa@674B@

    erhält man daher für jedes x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DA@ :

    f(x)= i=0 n f (i) (a) i! (xa) i + 1 n! a x (xX) n f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamOBaiaacgcaaaWaa8qCaeaacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyyXICTaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaeaacaWGHbaabaGaamiEaaqdcqGHRiI8aaWcbaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@60C7@  

     i

    Man ist versucht, über die Festsetzung

    f a g(x) a x f(xX)g MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgEHiQmaaBaaaleaacaWGHbaabeaakiaadEgacaGGOaGaamiEaiaacMcacqGH9aqpdaWdXbqaaiaadAgacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaGaeyyXICTaam4zaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipaaaa@49B4@

    ein Faltungsprodukt mit Entwicklungspunkt a einführen, um dann die Taylorformel [8.10.12] in der eleganten Form

    f= i=0 n f (i) (a) i! (Xa) i + 1 n! X n a f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaad6gacaGGHaaaaiaadIfadaahaaWcbeqaaiaad6gaaaGccqGHxiIkdaWgaaWcbaGaamyyaaqabaGccaWGMbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaa@5698@

    notieren zu können. Wir widerstehen dieser Versuchung.

    [8.10.13]

     
  • Im Spezialfall n=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9iaaicdaaaa@389C@ stellt die Taylorformel [8.10.13] den Mittelwertsatz [7.9.5] dar, denn nach seiner Integralversion [8.2.8] gilt für ein geeignetes x ˜ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiaaaaa@36F5@ zwischen a und x

    f(x)=f(a)+ a x f =f(a)+(xa) f ( x ˜ ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGHRaWkdaWdXbqaaiqadAgagaqbaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipakiabg2da9iaadAgacaGGOaGaamyyaiaacMcacqGHRaWkcaGGOaGaamiEaiabgkHiTiaadggacaGGPaGaeyyXICTabmOzayaafaGaaiikaiqadIhagaacaiaacMcaaaa@526A@

     

Im Kontext von [8.10.13] nennt man das Polynom

T a,n i=0 n f (i) (a) i! (Xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaeyypa0ZaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaWGHbGaaiykaaqaaiaadMgacaGGHaaaaiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdaaaa@4CCE@

das n-te Taylorpolynom und die Funktion R a,n : MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaaiOoaiabl2riHkabgkziUkabl2riHcaa@3F0A@ , gegeben durch

R a,n (x) 1 n! a x (xX) n f (n+1) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaiaacgcaaaWaa8qCaeaacaGGOaGaamiEaiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyyXICTaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaeaacaWGHbaabaGaamiEaaqdcqGHRiI8aaaa@5014@

das n-te Restglied von f bzgl. a. Man beachte auch die alternative Einführung der Taylorpolynome in 7.9. Dort wird das Restglied in seiner Lagrangeschen Form notiert.

Bei einer C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -Funktion gibt zu jedem n ein Restglied R a,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaaaa@3975@ , so dass jetzt die Gleichung

f= i=0 n f (i) (a) i! (Xa) i + R a,n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiwaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaey4kaSIaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaaaa@4E99@
[8.10.14]

für jedes n gültig ist. Daher sind etwa diejenigen C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -Funktionen interessant, bei denen die Folge ( R a,n ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkfadaWgaaWcbaGaamyyaiaacYcacaWGUbaabeaakiaacMcaaaa@3AD8@ punktweise gegen 0 konvergiert. Denn dann ist die Taylorreihe  ( i=0 n f (i) (a) i! (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiwaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiykaaaa@4993@ eine konvergente Potenzreihe mit Konvergenzbereich MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ (siehe [5.11.2]) und ihre Grenzfunktion

i=0 f (i) (a) i! (Xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaWGHbGaaiykaaqaaiaadMgacaGGHaaaaiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@48AE@

die Potenzreihenentwicklung oder, wie man hier auch sagt, die Taylorentwicklung von f in a. Gemäß [5.12.3] ist f damit eine analytische Funktion.

Aus dieser Beobachtung entwickeln wir nun ein Kriterium für die Analytizität einer C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -Funktion. Man beachte, dass nach einem Kommentar zu [7.8.10] nicht jede C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -Funktion analytisch ist.

Bemerkung (Analytizitätskriterium):  Sei f eine C MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCaaaleqabaGaeyOhIukaaaaa@384F@ -Funktion auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ . Gibt es zu jedem a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ eine ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@3790@ -Umgebung  ]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaacUfaaaa@3F42@ und ein c >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaaa@3BB4@ , so dass für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ und alle y]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@41C4@ die Abschätzung

| f (n) (y)|n! c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWG5bGaaiykaiaacYhacqGHKjYOcaWGUbGaaiyiaiabgwSixlaadogadaahaaWcbeqaaiaad6gaaaaaaa@454D@
[8.10.15]

gültig ist, so ist die Taylorreihe von f in a eine konvergente Potenzreihe. Auf ihrem Konvergenzbereich ]ar,a+r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacqGHsislcaWGYbGaaiilaiaadggacqGHRaWkcaWGYbGaai4waaaa@3DE2@ , r >0 {} MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgIGiolabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaakiabgQIiilaacUhacqGHEisPcaGG9baaaa@40DE@ , stellt sie die Taylorentwicklung von f in a dar:

f(x)= i=0 f (i) (a) i! (xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG4bGaaiykaiabg2da9maaqahabaWaaSaaaeaacaWGMbWaaWbaaSqabeaacaGGOaGaamyAaiaacMcaaaGccaGGOaGaamyyaiaacMcaaeaacaWGPbGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@4D15@   für alle  x]ar,a+r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaeyOeI0IaamOCaiaacYcacaWGHbGaey4kaSIaamOCaiaacUfaaaa@4063@ .
[8.10.16]

f ist daher eine analytische Funktion.

Beweis:  Sei a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ beliebig und ε,c >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaiilaiaadogacqGHiiIZcqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaaaaa@3E0B@ gemäß Voraussetzung gewählt. Für smin{ 1 2c ,ε}>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2da9iGac2gacaGGPbGaaiOBaiaacUhadaWcaaqaaiaaigdaaeaacaaIYaGaam4yaaaacaGGSaGaeqyTduMaaiyFaiabg6da+iaaicdaaaa@4341@ zeigen wir nun:

R a,n (x)0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGHbGaaiilaiaad6gaaeqaaOGaaiikaiaadIhacaGGPaGaeyOKH4QaaGimaaaa@3E7C@   für alle  x]as,a+s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaeyOeI0Iaam4CaiaacYcacaWGHbGaey4kaSIaam4CaiaacUfaaaa@4065@ .[2]

Die Darstellung [8.10.14] weist damit die Taylorreihe von f in a als eine konvergente Potenzreihe mit einem Konvergenzradius rs MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgwMiZkaadohaaaa@399E@ aus, deren Grenzfunktion auf ]as,a+s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacqGHsislcaWGZbGaaiilaiaadggacqGHRaWkcaWGZbGaai4waaaa@3DE4@ mit f übereinstimmt. f ist somit analytisch und stimmt nach dem Identitätssatz [5.12.13] auch auf ]ar,a+r[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacqGHsislcaWGYbGaaiilaiaadggacqGHRaWkcaWGYbGaai4waaaa@3DE2@ mit der (ebenfalls analytischen) Grenzfunktion i=0 f (i) (a) i! (Xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaadaWcaaqaaiaadAgadaahaaWcbeqaaiaacIcacaWGPbGaaiykaaaakiaacIcacaWGHbGaaiykaaqaaiaadMgacaGGHaaaaiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@48AE@ überein.

Für x=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadggaaaa@38D2@ ist in [2] nichts zu zeigen. Liegt x  links () von a, also + as<x<a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiaadohacqGH8aapcaWG4bGaeyipaWJaamyyaaaa@3C9F@ , so erhalten wir mit [8.2.11] und [8.2.10] die folgende Abschätzung:

| R a,n (x)| 1 n! x a |xX | n | f (n+1) | (n+1)! n! c n+1 x a (Xx) n = (n+1)! n! c n+1 1 n+1 (ax) n+1 = c n+1 |ax | n+1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiiFaiaadkfadaWgaaWcbaGaamyyaiaacYcacaWGUbaabeaakiaacIcacaWG4bGaaiykaiaacYhaaeaacqGHKjYOdaWcaaqaaiaaigdaaeaacaWGUbGaaiyiaaaadaWdXbqaaiaacYhacaWG4bGaeyOeI0IaamiwaiaacYhadaahaaWcbeqaaiaad6gaaaGccqGHflY1caGG8bGaamOzamaaCaaaleqabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacYhaaSqaaiaadIhaaeaacaWGHbaaniabgUIiYdaakeaaaeaacqGHKjYOdaWcaaqaaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGHaaabaGaamOBaiaacgcaaaGaeyyXICTaam4yamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGcdaWdXbqaaiaacIcacaWGybGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gaaaaabaGaamiEaaqaaiaadggaa0Gaey4kIipaaOqaaaqaaiabg2da9maalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacgcaaeaacaWGUbGaaiyiaaaacqGHflY1caWGJbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgwSixpaalaaabaGaaGymaaqaaiaad6gacqGHRaWkcaaIXaaaaiabgwSixlaacIcacaWGHbGaeyOeI0IaamiEaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaaabaGaeyypa0Jaam4yamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHflY1caGG8bGaamyyaiabgkHiTiaadIhacaGG8bWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaaaaa@97AD@

Für alle x]as,a+s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaWGHbGaeyOeI0Iaam4CaiaacYcacaWGHbGaey4kaSIaam4CaiaacUfaaaa@4065@ hat man daher:

0| R a,n (x)| c n+1 s n+1 c n+1 1 (2c) n+1 = 1 2 n+1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaacYhacaWGsbWaaSbaaSqaaiaadggacaGGSaGaamOBaaqabaGccaGGOaGaamiEaiaacMcacaGG8bGaeyizImQaam4yamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHflY1caWGZbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiabgsMiJkaadogadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaeyyXIC9aaSaaaeaacaaIXaaabaGaaiikaiaaikdacaWGJbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaaaaOGaeyOKH4QaaGimaaaa@61E9@

Gemäß Schachtelsatz [5.5.8] bedeutet dies: | R a,n (x)|0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkfadaWgaaWcbaGaamyyaiaacYcacaWGUbaabeaakiaacIcacaWG4bGaaiykaiaacYhacqGHsgIRcaaIWaaaaa@407C@ . Mit [5.5.6] ist daher [2] bewiesen.

Interessanterweise lässt sich auch die Umkehrung von [8.10.15] beweisen, so dass dieses Kriterium eine vollständige Charakterisierung der analytischen Funktionen auf MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ darstellt!

Bemerkung:  Ist f: MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQdacqWIDesOcqGHsgIRcqWIDesOaaa@3C5F@ analytisch, so gibt es zu jedem a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ eine ε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@3790@ -Umgebung  ]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyxaiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaacUfaaaa@3F42@ und ein c >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaaa@3BB4@ so dass

| f (n) (y)|n! c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWG5bGaaiykaiaacYhacqGHKjYOcaWGUbGaaiyiaiabgwSixlaadogadaahaaWcbeqaaiaad6gaaaaaaa@454D@   für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ und alle y]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@41C4@
[8.10.17]

Beweis:  Ist f analytisch, so gibt es nach [5.12.1] eine konvergente Potenzreihe ( i=0 n a i (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@43D2@ und ein s>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg6da+iaaicdaaaa@38A3@ , so dass

f(y)= i=0 a i (ya) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacIcacaWG5bGaaiykaiabg2da9maaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWG5bGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@4756@

für alle y]as,a+s[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0Iaam4CaiaacYcacaWGHbGaey4kaSIaam4CaiaacUfaaaa@3FE6@ . Da Potenzreihen summandenweise differenziert werden (siehe [7.5.7]), können wir die Ableitungsregel [7.8.14] einsetzen und erhalten so für diese y:

f (n) (y)= i=n i! (in)! a i (ya) in =n! i=n (T i n )T a i (ya) in =n! i=0 (T i+n n )T a i+n (ya) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaaiikaiaadMhacaGGPaGaeyypa0ZaaabCaeaadaWcaaqaaiaadMgacaGGHaaabaGaaiikaiaadMgacqGHsislcaWGUbGaaiykaiaacgcaaaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWG5bGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgacqGHsislcaWGUbaaaaqaaiaadMgacqGH9aqpcaWGUbaabaGaeyOhIukaniabggHiLdGccqGH9aqpcaWGUbGaaiyiamaaqahabaGaaiikauaabeqaceaaaeaacaWGPbaabaGaamOBaaaacaGGPaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWG5bGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgacqGHsislcaWGUbaaaaqaaiaadMgacqGH9aqpcaWGUbaabaGaeyOhIukaniabggHiLdGccqGH9aqpcaWGUbGaaiyiamaaqahabaGaaiikauaabeqaceaaaeaacaWGPbGaey4kaSIaamOBaaqaaiaad6gaaaGaaiykaiaadggadaWgaaWcbaGaamyAaiabgUcaRiaad6gaaeqaaOGaaiikaiaadMhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaaa@7F4C@ .

Nach [5.0.6] ist  2 i+n = k=0 i+n (T i+n k )T (T i+n n )T MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCaaaleqabaGaamyAaiabgUcaRiaad6gaaaGccqGH9aqpdaaeWbqaaiaacIcafaqabeGabaaabaGaamyAaiabgUcaRiaad6gaaeaacaWGRbaaaiaacMcaaSqaaiaadUgacqGH9aqpcaaIWaaabaGaamyAaiabgUcaRiaad6gaa0GaeyyeIuoakiabgwMiZkaacIcafaqabeGabaaabaGaamyAaiabgUcaRiaad6gaaeaacaWGUbaaaiaacMcaaaa@4DDF@ für alle i und alle n. Mit ε s 4 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyypa0ZaaSaaaeaacaWGZbaabaGaaGinaaaaaaa@39DC@ können wir daher | f (n) (y)| MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWG5bGaaiykaiaacYhaaaa@3D2E@ für alle y]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@4144@ folgendermaßen abschätzen:

| f (n) (y)| n! i=0 (T i+n n )T| a i+n ||ya | i n! i=0 2 i+n | a i+n | s i (22) i =n! 2 n i=0 | a i+n | s i 2 i =n! 2 n i=0 | a i+n | 2 n s n s i+n 2 i+n n! 4 n s n i=0 | a i | s i 2 i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaaaabaGaaiiFaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWG5bGaaiykaiaacYhaaeaacqGHKjYOcaWGUbGaaiyiamaaqahabaGaaiikauaabeqaceaaaeaacaWGPbGaey4kaSIaamOBaaqaaiaad6gaaaGaaiykaiaacYhacaWGHbWaaSbaaSqaaiaadMgacqGHRaWkcaWGUbaabeaakiaacYhacqGHflY1caGG8bGaamyEaiabgkHiTiaadggacaGG8bWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaakeaaaeaacqGHKjYOcaWGUbGaaiyiamaaqahabaGaaGOmamaaCaaaleqabaGaamyAaiabgUcaRiaad6gaaaGccaGG8bGaamyyamaaBaaaleaacaWGPbGaey4kaSIaamOBaaqabaGccaGG8bGaeyyXIC9aaSaaaeaacaWGZbWaaWbaaSqabeaacaWGPbaaaaGcbaGaaiikaiaaikdacqGHflY1caaIYaGaaiykamaaCaaaleqabaGaamyAaaaaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaaqaaiabg2da9iaad6gacaGGHaGaeyyXICTaaGOmamaaCaaaleqabaGaamOBaaaakmaaqahabaGaaiiFaiaadggadaWgaaWcbaGaamyAaiabgUcaRiaad6gaaeqaaOGaaiiFaiabgwSixpaalaaabaGaam4CamaaCaaaleqabaGaamyAaaaaaOqaaiaaikdadaahaaWcbeqaaiaadMgaaaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaakeaaaeaacqGH9aqpcaWGUbGaaiyiaiabgwSixlaaikdadaahaaWcbeqaaiaad6gaaaGcdaaeWbqaaiaacYhacaWGHbWaaSbaaSqaaiaadMgacqGHRaWkcaWGUbaabeaakiaacYhacqGHflY1daWcaaqaaiaaikdadaahaaWcbeqaaiaad6gaaaaakeaacaWGZbWaaWbaaSqabeaacaWGUbaaaaaakiabgwSixpaalaaabaGaam4CamaaCaaaleqabaGaamyAaiabgUcaRiaad6gaaaaakeaacaaIYaWaaWbaaSqabeaacaWGPbGaey4kaSIaamOBaaaaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaOqaaaqaaiabgsMiJkaad6gacaGGHaGaeyyXIC9aaSaaaeaacaaI0aWaaWbaaSqabeaacaWGUbaaaaGcbaGaam4CamaaCaaaleqabaGaamOBaaaaaaGcdaaeWbqaaiaacYhacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaiiFaiabgwSixpaalaaabaGaam4CamaaCaaaleqabaGaamyAaaaaaOqaaiaaikdadaahaaWcbeqaaiaadMgaaaaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaaaa@CF34@

Mit kmax{1, i=0 | a i | s i 2 i }1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2da9iGac2gacaGGHbGaaiiEaiaacUhacaaIXaGaaiilamaaqahabaGaaiiFaiaadggadaWgaaWcbaGaamyAaaqabaGccaGG8bGaeyyXIC9aaSaaaeaacaWGZbWaaWbaaSqabeaacaWGPbaaaaGcbaGaaGOmamaaCaaaleqabaGaamyAaaaaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiaac2hacqGHLjYScaaIXaaaaa@50D7@

 i

Man beachte dabei, dass die Potenzreihe ( i=0 n a i (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaGaamyyamaaBaaaleaacaWGPbaabeaakiaacIcacaWGybGaeyOeI0IaamyyaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacaWGUbaaniabggHiLdGccaGGPaaaaa@43D2@ nach [5.11.9] in a+ s 2 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgUcaRmaalaaabaGaam4Caaqaaiaaikdaaaaaaa@38F5@ absolut konvergiert.

, also k k n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgsMiJkaadUgadaahaaWcbeqaaiaad6gaaaaaaa@3A1E@ , und c 4k s MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=qqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maalaaabaGaaGinaiaadUgaaeaacaWGZbaaaaaa@3A0D@ ist damit Abschätzung [8.10.17] gewährleistet.

Beachte:

  • [8.10.15] ist sicher gewährleistet, wenn f für jedes n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ die schärfere Bedingung

    | f (n) (y)| c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadAgadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWG5bGaaiykaiaacYhacqGHKjYOcaWGJbWaaWbaaSqabeaacaWGUbaaaaaa@416B@   für alle y]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@41C4@
    [8.10.18]

    erfüllt. Gelegentlich liegen sogar Funktionen mit (einheitlich) beschränkten Ableitungen vor, wie etwa sin und cos. [8.10.18] ist dann trivialerweise für alle y MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolabl2riHcaa@39DB@ gegeben.

  • Alle Ergebnisse lassen sich auch für ein beliebiges offenes Intervall formulieren und beweisen. Zwei der folgenden Beispiele machen davon Gebrauch.
     

Beispiel:  

  • Für jedes b>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg6da+iaaicdaaaa@3892@ ist die Exponentialfunktion b X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiwaaaaaaa@37DA@ ist analytisch. Jede ihrer Taylorreihen konvergiert auf ganz MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa@3759@ :

    b x = i=0 (lnb) i b a i! (xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaakiabg2da9maaqahabaWaaSaaaeaacaGGOaGaciiBaiaac6gacaWGIbGaaiykamaaCaaaleqabaGaamyAaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadggaaaaakeaacaWGPbGaaiyiaaaacaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@4FDE@   für alle x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DA@ .
    [8.10.19]

    Beweis:  Sei a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgIGiolabl2riHcaa@39C3@ beliebig.
    Für b=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9iaaigdaaaa@3891@ ist nichts zu zeigen, denn b X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiwaaaaaaa@37DA@ ist hier die konstante Funktion 1. Sei daher im Folgenden b1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgcMi5kaaigdaaaa@3952@ .

    Als stetige Funktion ist b X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiwaaaaaaa@37DA@ auf dem abgeschlossenen Intervall [a1,a+1] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacqGHsislcaaIXaGaaiilaiaadggacqGHRaWkcaaIXaGaaiyxaaaa@3D6A@ beschränkt (siehe [6.6.4]). Es gibt also ein k, o.E. k1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgwMiZkaaigdaaaa@395A@ , so dass | b y |k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkgadaahaaWcbeqaaiaadMhaaaGccaGG8bGaeyizImQaam4Aaaaa@3CAA@ für alle y]a1,a+1[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaaGymaiaacYcacaWGHbGaey4kaSIaaGymaiaacUfaaaa@3FEC@ . Mit [8.9.15] hat man daher für diese y und alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ :

    | ( b X ) (n) (y)|=| (lnb) n b y ||lnb | n k (|lnb|k) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaacIcacaWGIbWaaWbaaSqabeaacaWGybaaaOGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaaiikaiaadMhacaGGPaGaaiiFaiabg2da9iaacYhacaGGOaGaciiBaiaac6gacaWGIbGaaiykamaaCaaaleqabaGaamOBaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadMhaaaGccaGG8bGaeyizImQaaiiFaiGacYgacaGGUbGaamOyaiaacYhadaahaaWcbeqaaiaad6gaaaGccqGHflY1caWGRbGaeyizImQaaiikaiaacYhaciGGSbGaaiOBaiaadkgacaGG8bGaeyyXICTaam4AaiaacMcadaahaaWcbeqaaiaad6gaaaaaaa@63E8@ .

    Nach [8.10.18,15] ist b X MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiwaaaaaaa@37DA@ somit analytisch.

    Die Darstellung [8.10.19] erhalten wir, wenn sich der Konvergenzradius r der Taylorreihe ( i=0 n (lnb) i b a i! (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaSaaaeaacaGGOaGaciiBaiaac6gacaWGIbGaaiykamaaCaaaleqabaGaamyAaaaakiabgwSixlaadkgadaahaaWcbeqaaiaadggaaaaakeaacaWGPbGaaiyiaaaaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHris5aOGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaakiaacMcaaaa@4D97@ zu r= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iabg6HiLcaa@3957@ ausrechnen läßt. Mit der Konvergenz

    (lnb) n+1 b a n! (n+1)! (lnb) n b a = lnb n+1 0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaGGOaGaciiBaiaac6gacaWGIbGaaiykamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGHflY1caWGIbWaaWbaaSqabeaacaWGHbaaaOGaeyyXICTaamOBaiaacgcaaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaiabgwSixlaacIcaciGGSbGaaiOBaiaadkgacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyyXICTaamOyamaaCaaaleqabaGaamyyaaaaaaGccqGH9aqpdaWcaaqaaiGacYgacaGGUbGaamOyaaqaaiaad6gacqGHRaWkcaaIXaaaaiabgkziUkaaicdaaaa@5EA0@

    ergibt sich dies aber direkt aus dem Quotientenkriterium [5.11.6].

    Für a=0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaicdaaaa@388F@ verkürzt sich [8.10.19] zu:

    b x = i=0 (lnb) i i! x i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCaaaleqabaGaamiEaaaakiabg2da9maaqahabaWaaSaaaeaacaGGOaGaciiBaiaac6gacaWGIbGaaiykamaaCaaaleqabaGaamyAaaaaaOqaaiaadMgacaGGHaaaaiaadIhadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@4864@   für alle x MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolabl2riHcaa@39DA@ .

    Mit lne=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWGLbGaeyypa0JaaGymaaaa@3A78@ erhält man daher für die e-Funktion  e X =exp MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCaaaleqabaGaamiwaaaakiabg2da9iGacwgacaGG4bGaaiiCaaaa@3BC8@ die Taylordarstellung

    exp= i=0 1 i! X i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacIhacaGGWbGaeyypa0ZaaabCaeaadaWcaaqaaiaaigdaaeaacaWGPbGaaiyiaaaacaWGybWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdaaaa@4476@ ,

    also die ursprünglich in [5.9.18] gewählte Definition.


     
  • Für jedes b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolabl2riHcaa@39C4@ ist die Potenzfunktion X b : >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOyaaaakiaacQdacqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaGccqGHsgIRcqWIDesOaaa@3F68@ analytisch. Ist a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3891@ , so gilt für alle x]0,2a[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaaikdacaWGHbGaai4waaaa@3D36@ :

    x b = i=0 j=0 i1 (bj) a bi i! (xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamOyaaaakiabg2da9maaqahabaWaaSaaaeaadaqeWbqaaiaacIcacaWGIbGaeyOeI0IaamOAaiaacMcaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyAaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadggadaahaaWcbeqaaiaadkgacqGHsislcaWGPbaaaaGcbaGaamyAaiaacgcaaaGaaiikaiaadIhacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaaa@580C@  

     i

    Man beachte die Konvention j=n m a j =1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaebCaeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaaqaaiaadQgacqGH9aqpcaWGUbaabaGaamyBaaqdcqGHpis1aOGaeyypa0JaaGymaaaa@3FB5@ , falls m<n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgYda8iaad6gaaaa@38D2@ .

    [8.10.20]

    Beweis:  Wir erinnern zunächst an die Ableitungen der Potenzfunktion (siehe [8.9.11]):

    ( X b ) (n) = i=0 n1 (bi) X bn MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIfadaahaaWcbeqaaiaadkgaaaGccaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccqGH9aqpdaqeWbqaaiaacIcacaWGIbGaeyOeI0IaamyAaiaacMcaaSqaaiaadMgacqGH9aqpcaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadIfadaahaaWcbeqaaiaadkgacqGHsislcaWGUbaaaaaa@4E80@ .

    Sei jetzt a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3891@ beliebig und ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ so gewählt, dass aε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiabew7aLjabg6da+iaaicdaaaa@3B25@ . Die stetige Funktion X b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOyaaaaaaa@37DA@ ist auf dem abgeschlossenen Intervall [aε,a+ε] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiaadggacqGHsislcqaH1oqzcaGGSaGaamyyaiabgUcaRiabew7aLjaac2faaaa@3F42@ beschränkt. Es gibt also ein k, o.E. k1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgwMiZkaaigdaaaa@395A@ , so dass 0 y b k MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadMhadaahaaWcbeqaaiaadkgaaaGccqGHKjYOcaWGRbaaaa@3D19@ für alle y[aε,a+ε] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaacUfacaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGDbaaaa@41C4@ . Da für n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ die Funktion X n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOBaaaaaaa@37E6@ im Positiven monoton wächst, erhalten wir daraus:

    0 y bn = y b y n k (aε) n k n (aε) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadMhadaahaaWcbeqaaiaadkgacqGHsislcaWGUbaaaOGaeyypa0ZaaSaaaeaacaWG5bWaaWbaaSqabeaacaWGIbaaaaGcbaGaamyEamaaCaaaleqabaGaamOBaaaaaaGccqGHKjYOdaWcaaqaaiaadUgaaeaacaGGOaGaamyyaiabgkHiTiabew7aLjaacMcadaahaaWcbeqaaiaad6gaaaaaaOGaeyizIm6aaSaaaeaacaWGRbWaaWbaaSqabeaacaWGUbaaaaGcbaGaaiikaiaadggacqGHsislcqaH1oqzcaGGPaWaaWbaaSqabeaacaWGUbaaaaaaaaa@5432@   für alle y[aε,a+ε] MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaacUfacaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGDbaaaa@41C4@ .

    Mit der für i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE3@ gültigen Abschätzung

    |bi||b|+|i|=|b|+i|b|i+i=(|b|+1)i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiaadkgacqGHsislcaWGPbGaaiiFaiabgsMiJkaacYhacaWGIbGaaiiFaiabgUcaRiaacYhacaWGPbGaaiiFaiabg2da9iaacYhacaWGIbGaaiiFaiabgUcaRiaadMgacqGHKjYOcaGG8bGaamOyaiaacYhacqGHflY1caWGPbGaey4kaSIaamyAaiabg2da9iaacIcacaGG8bGaamOyaiaacYhacqGHRaWkcaaIXaGaaiykaiabgwSixlaadMgaaaa@5C93@

    können wir daher für diese y folgendermaßen abschätzen:

    | ( X b ) (n) (y)| =|b| i=1 n1 |bi| | y bn | |b| i=1 n1 (|b|+1)i k n (aε) n =|b| (|b|+1) n1 (n1)! k n (aε) n n! (|b|+1) n k n (aε) n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaaaabaGaaiiFaiaacIcacaWGybWaaWbaaSqabeaacaWGIbaaaOGaaiykamaaCaaaleqabaGaaiikaiaad6gacaGGPaaaaOGaaiikaiaadMhacaGGPaGaaiiFaaqaaiabg2da9iaacYhacaWGIbGaaiiFamaarahabaGaaiiFaiaadkgacqGHsislcaWGPbGaaiiFaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHpis1aOGaeyyXICTaaiiFaiaadMhadaahaaWcbeqaaiaadkgacqGHsislcaWGUbaaaOGaaiiFaaqaaaqaaiabgsMiJkaacYhacaWGIbGaaiiFamaarahabaGaaiikaiaacYhacaWGIbGaaiiFaiabgUcaRiaaigdacaGGPaGaeyyXICTaamyAaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHpis1aOGaeyyXIC9aaSaaaeaacaWGRbWaaWbaaSqabeaacaWGUbaaaaGcbaGaaiikaiaadggacqGHsislcqaH1oqzcaGGPaWaaWbaaSqabeaacaWGUbaaaaaaaOqaaaqaaiabg2da9iaacYhacaWGIbGaaiiFaiabgwSixlaacIcacaGG8bGaamOyaiaacYhacqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHflY1caGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiaiabgwSixpaalaaabaGaam4AamaaCaaaleqabaGaamOBaaaaaOqaaiaacIcacaWGHbGaeyOeI0IaeqyTduMaaiykamaaCaaaleqabaGaamOBaaaaaaaakeaaaeaacqGHKjYOcaWGUbGaaiyiaiabgwSixpaalaaabaGaaiikaiaacYhacaWGIbGaaiiFaiabgUcaRiaaigdacaGGPaWaaWbaaSqabeaacaWGUbaaaOGaeyyXICTaam4AamaaCaaaleqabaGaamOBaaaaaOqaaiaacIcacaWGHbGaeyOeI0IaeqyTduMaaiykamaaCaaaleqabaGaamOBaaaaaaaaaaaa@AF8C@

    Mit c (|b|+1)k aε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maalaaabaGaaiikaiaacYhacaWGIbGaaiiFaiabgUcaRiaaigdacaGGPaGaeyyXICTaam4AaaqaaiaadggacqGHsislcqaH1oqzaaaaaa@4478@ ist daher die Bedingung [8.10.15] erfüllt, X b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaCaaaleqabaGaamOyaaaaaaa@37DA@ also analytisch. Wir ermitteln abschließend den Konvergenzradius r der Taylorreihe

    ( i=0 n j=0 i1 (bj) a bi i! (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaSaaaeaadaqeWbqaaiaacIcacaWGIbGaeyOeI0IaamOAaiaacMcaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyAaiabgkHiTiaaigdaa0Gaey4dIunakiabgwSixlaadggadaahaaWcbeqaaiaadkgacqGHsislcaWGPbaaaaGcbaGaamyAaiaacgcaaaGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcaaaa@55B0@ .

    Gemäß [8.10.16] ist [8.10.20] gewährleistet, wenn ra MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgwMiZkaadggaaaa@398C@ ausfällt. Ist b MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgIGiolablwriLcaa@39C0@ , so ist die Taylorreihe eine endliche Summe, denn bei fast allen Summanden tritt der Faktor bb MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgkHiTiaadkgaaaa@38A4@ auf, also ist r= MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iabg6HiLcaa@3957@ . Im anderen Fall setzen wir das Quotientenkriterium [5.11.7] ein:

    j=0 n1 (bj) a bn (n+1)! n! j=0 n (bj) a bn1 = (n+1)a bn a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaadaqeWbqaaiaacIcacaWGIbGaeyOeI0IaamOAaiaacMcacqGHflY1caWGHbWaaWbaaSqabeaacaWGIbGaeyOeI0IaamOBaaaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabg+GivdGccqGHflY1caGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiyiaaqaaiaad6gacaGGHaWaaebCaeaacaGGOaGaamOyaiabgkHiTiaadQgacaGGPaGaeyyXICTaamyyamaaCaaaleqabaGaamOyaiabgkHiTiaad6gacqGHsislcaaIXaaaaaqaaiaadQgacqGH9aqpcaaIWaaabaGaamOBaaqdcqGHpis1aaaakiabg2da9maalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiabgwSixlaadggaaeaacaWGIbGaeyOeI0IaamOBaaaacqGHsgIRcqGHsislcaWGHbaaaa@7093@

    Also ist r=|a|=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaacYhacqGHsislcaWGHbGaaiiFaiabg2da9iaadggaaaa@3DA5@ .

    Für b= 1 n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2da9maalaaabaGaaGymaaqaaiaad6gaaaaaaa@3994@ etwa erhält man aus [8.10.20] die folgende Berechnungsmöglichkeit für die n-te Wurzel:

    x n = x 1 n = i=0 j=0 i1 (1/nj) i! (x1) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaacaWG4baaleaacaWGUbaaaOGaeyypa0JaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOBaaaaaaGccqGH9aqpdaaeWbqaamaalaaabaWaaebCaeaacaGGOaGaaGymaiaac+cacaWGUbGaeyOeI0IaamOAaiaacMcaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyAaiabgkHiTiaaigdaa0Gaey4dIunaaOqaaiaadMgacaGGHaaaaiaacIcacaWG4bGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaaabaGaamyAaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@5724@   für alle x]0,2[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaaikdacaGGBbaaaa@3C50@

     
  • Der Logarithmus ln: >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGG6aGaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaOGaeyOKH4QaeSyhHekaaa@3F51@ ist analytisch. Für jedes a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3891@ gilt:

    lnx=lna+ i=1 (1) i1 i a i (xa) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG4bGaeyypa0JaciiBaiaac6gacaWGHbGaey4kaSYaaabCaeaadaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaiabgkHiTiaaigdaaaaakeaacaWGPbGaeyyXICTaamyyamaaCaaaleqabaGaamyAaaaaaaGccaGGOaGaamiEaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdaaaa@5438@   für alle x]0,2a[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaaikdacaWGHbGaai4waaaa@3D36@ .
    [8.10.21]

    Beweis:  Per Induktion zeigt man leicht

     i

    Der Induktionsanfang

    ln= 1 X | >0 = (1) 11 (11)! 1 X 1 | >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGNaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamiwaaaacaGG8bGaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaOGaeyypa0JaaiikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaaIXaGaeyOeI0IaaGymaaaakiaacIcacaaIXaGaeyOeI0IaaGymaiaacMcacaGGHaWaaSaaaeaacaaIXaaabaGaamiwamaaCaaaleqabaGaaGymaaaaaaGccaGG8bGaeSyhHe6aaWbaaSqabeaacqGH+aGpcaaIWaaaaaaa@518A@

    steht bereits in Abschnitt 8.7. Ist die Ableitungsformel für ein n1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaigdaaaa@395D@ bereits gültig, so ist

    ln (n+1) =( (1) n1 (n1)! 1 X n | >0 ) = (1) n1 (n1)!(n) 1 X n+1 | >0 = (1) n n! 1 X n+1 | >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaaqaaiGacYgacaGGUbWaaWbaaSqabeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaGcbaGaeyypa0JaaiikaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiamaalaaabaGaaGymaaqaaiaadIfadaahaaWcbeqaaiaad6gaaaaaaOGaaiiFaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaakiqacMcagaqbaaqaaaqaaiabg2da9iaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiaiabgwSixlaacIcacqGHsislcaWGUbGaaiykamaalaaabaGaaGymaaqaaiaadIfadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaakiaacYhacqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaaakeaaaeaacqGH9aqpcaGGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gaaaGccaWGUbGaaiyiamaalaaabaGaaGymaaqaaiaadIfadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaaakiaacYhacqWIDesOdaahaaWcbeqaaiabg6da+iaaicdaaaaaaaaa@7975@
    :

    ln (n) = (1) n1 (n1)! 1 X n | >0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gadaahaaWcbeqaaiaacIcacaWGUbGaaiykaaaakiabg2da9iaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaaiyiamaalaaabaGaaGymaaqaaiaadIfadaahaaWcbeqaaiaad6gaaaaaaOGaaiiFaiabl2riHoaaCaaaleqabaGaeyOpa4JaaGimaaaaaaa@4CF3@   für alle n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ .

    Sei nun a>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg6da+iaaicdaaaa@3891@ beliebig und ε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeyOpa4JaaGimaaaa@3952@ so gewählt, dass aε>0 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgkHiTiabew7aLjabg6da+iaaicdaaaa@3B25@ . Dann gilt mit c 1 aε MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maalaaabaGaaGymaaqaaiaadggacqGHsislcqaH1oqzaaaaaa@3C1C@ für alle y]aε,a+ε[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaac2facaWGHbGaeyOeI0IaeqyTduMaaiilaiaadggacqGHRaWkcqaH1oqzcaGGBbaaaa@41C4@ und n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGiolablwriLoaaCaaaleqabaGaey4fIOcaaaaa@3AE8@ :

    | ln (n) (y)|=(n1)! 1 y n n! 1 (aε) n =n! c n MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiGacYgacaGGUbWaaWbaaSqabeaacaGGOaGaamOBaiaacMcaaaGccaGGOaGaamyEaiaacMcacaGG8bGaeyypa0Jaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaacgcadaWcaaqaaiaaigdaaeaacaWG5bWaaWbaaSqabeaacaWGUbaaaaaakiabgsMiJkaad6gacaGGHaWaaSaaaeaacaaIXaaabaGaaiikaiaadggacqGHsislcqaH1oqzcaGGPaWaaWbaaSqabeaacaWGUbaaaaaakiabg2da9iaad6gacaGGHaGaeyyXICTaam4yamaaCaaaleqabaGaamOBaaaaaaa@583E@ .

    [8.10.15] ist also erfüllt und die Taylorreihe

    ( i=0 n ln (i) (a) i! (Xa) i )=(lna+ i=1 n (1) i1 i a i (Xa) i ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaaqahabaWaaSaaaeaaciGGSbGaaiOBamaaCaaaleqabaGaaiikaiaadMgacaGGPaaaaOGaaiikaiaadggacaGGPaaabaGaamyAaiaacgcaaaGaaiikaiaadIfacqGHsislcaWGHbGaaiykamaaCaaaleqabaGaamyAaaaaaeaacaWGPbGaeyypa0JaaGimaaqaaiaad6gaa0GaeyyeIuoakiaacMcacqGH9aqpcaGGOaGaciiBaiaac6gacaWGHbGaey4kaSYaaabCaeaadaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaiabgkHiTiaaigdaaaaakeaacaWGPbGaeyyXICTaamyyamaaCaaaleqabaGaamyAaaaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccaGGOaGaamiwaiabgkHiTiaadggacaGGPaWaaWbaaSqabeaacaWGPbaaaOGaaiykaaaa@66BF@

    damit konvergent. Ihren Konvergenzradius r errechnen wir wieder mit [5.11.7] zu

    r=lim (n+1) a n+1 n a n =lim n+1 n a=a MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iGacYgacaGGPbGaaiyBamaalaaabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaiabgwSixlaadggadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaaGcbaGaamOBaiabgwSixlaadggadaahaaWcbeqaaiaad6gaaaaaaOGaeyypa0JaciiBaiaacMgacaGGTbWaaSaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaad6gaaaGaamyyaiabg2da9iaadggaaaa@542E@ ,

    so dass schließlich [8.10.21] bewiesen ist.

    Für a=1 MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9iaaigdaaaa@3890@ etwa bedeutet dies:

    lnx= i=1 (1) i1 i (x1) i MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaWG4bGaeyypa0ZaaabCaeaadaWcaaqaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaamyAaiabgkHiTiaaigdaaaaakeaacaWGPbaaaaWcbaGaamyAaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaacIcacaWG4bGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaadMgaaaaaaa@4C21@   für alle x]0,2[ MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrVepeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaac2facaaIWaGaaiilaiaaikdacaGGBbaaaa@3C50@ .

8.9. 8.11.